
CH-1667 ENNEY - Téléphone 026 / 921 27 24 – 921 27 13 - Téléfax 026 / 921 32 87

E I P

A-300
Assembly Language for E-300 and N-300 controllers

Novemberr 21st 2000

E-300 2

1. INTRODUCTION TO THE E-300 ASSEMBLY LANGUAGE .. 3

2. ELEMENTS OF THE LANGUAGE... 5
2.1. Legal Characters .. 5
2.2. Numbers ... 5
2.3. Symbols .. 6
2.4. Strings... 6
2.5. Statements.. 6
2.6. Comments .. 7

3. CODE GENERATING ELEMENTS.. 8
3.1. Instruction ... 8
3.2. Immediate Arguments .. 8
3.3. Variables as Arguments ... 9
3.4. Registers as Direct Arguments .. 10
3.5. The "Program Number" as a Direct Argument .. 11
3.6. Dummy Arguments... 11
3.7. Indexing .. 11
3.8. Labels and Addresses.. 12

4. SYMBOL DEFINITION, VARIABLE DEFINITION AND ASSEMBLY DIRECTIVES .. 13
4.1. Definition of Labels. .. 13
4.2. Variable Definition... 13
4.3. Initial Contents of Variables.. 14
4.4. Generic Variables. .. 15
4.5. Equivalence Statements... 16
4.6. The ORG Directive ... 17
4.7. The END Directive.. 17
4.8. The INCL and PATH Directives. .. 17
4.9. The MODule Directive. ... 18
4.10. The LISTON and LISTOFF directives. .. 18

5. E-300 MEMORY ORGANIZATION, DEBUG MODE... 20
5.1. The POWER-UP Utility... 21

6. E-300 INSTRUCTIONS .. 23
6.1. Two-operand Arithmetic Instructions ... 23
6.2. Single Operand Arithmetic Instructions ... 24
6.3. Miscellaneous Instructions ... 25
6.4. Program Control Instructions ... 28
6.5. Procedure Call .. 31
6.6. Motion Generator Instructions.. 33
6.7. Keyboard and Display Instructions .. 34

6.7.1. Keyboard Instructions .. 34
6.7.2. The Keys as Boolean Variables .. 36
6.7.3. The Keyboard LEDs .. 37
6.7.4. Display Instructions.. 37

6.8. Input, Output, I/O Bus, AD and DA Converter Instructions, Temperature Sensor 42
6.9. FLASH Memory Programming... 43

E-300 2

6. E-300 INSTRUCTIONS
6.10. ASCII Serial Reception... 46a
6.11. ASCII Serial Transmission ... 46c

7. THE E-300 MOTION GENERATORS.. 50
7.1. Variables Pertaining to Motion Generation.. 50

7.1.1. PABS, Absolute Position Register... 50
7.1.2. DIV, Frequency Divider.. 51
7.1.3. The Steady State Velocity, SPLD, SPLI.. 51
7.1.4. Acceleration and Deceleration, KUP and KDN... 52
7.1.5. Axis Status Flags: RUN, ZSF, NBOOST, BSTE, BSTI, FAULT, LSA................................ 52
7.1.6. Example of Motion Programs .. 53

7.2. Software Travel Limits .. 54
7.3. The E-300 Interpolator .. 55

7.3.1. Principle of Vector Generation .. 55
7.3.2. The Interpolation Buffer ... 55
7.3.3. Interpolation Instructions.. 57

8. EXAMPLES OF PROCEDURES.. 60
8.1. Dead Time Procedures .. 60
8.2. Procedures for I/O Control ... 60
8.3. Positioning Procedure .. 61
8.4. Jogging Procedures ... 62
8.5 Axis Position Display .. 63

APPENDIX A: E-300 DEDICATED VARIABLES... 65

Note: The chapters 7.2 and 7.3 are not implemented in version 1.00

E-300 2

1. INTRODUCTION TO THE E-300 ASSEMBLY LANGUAGE

The purpose of this manual is to provide the necessary information to program E-300 controllers. The
hardware aspects relevant to the programmer are also covered.
From the point of view of the programmer, the E-300 is a set of 8 identical processing units sharing
common storage areas and common physical devices. The Figure 1. shows the basic organization.
Figure 1. is not representative of the actual electronic circuits, but merely a functional representation.

 - The program interpreter has a time-sharing mechanism, which allows simultaneous execution of
up to 8 different programs or tasks. An additional task is reserved to the communication link.

 - A simultaneous program has its own set of 8 register banks, one for each procedure nesting
level. A register bank has 6 registers, a program counter and status flags. Each register is able
to hold a full definition numerical quantity or to serve as an index.

 - The E-300 is basically a "three address" machine, for example, a single instruction will add the
contents of SOURCE1 with the contents of SOURCE2 and store the sum into DESTINATION.

 - The E-300 operates on numerical quantities, integer or floating-point, with a 32 bit precision and
also on single bits or boolean elements.

 - The E-300 language supports a full set of floating-point instructions, including transcendental
functions.

 - An unique "parametric procedure call" system allows the user to create its own set of
instructions in order to obtain the best adequation of the language to its particular needs.

 - The E-300 System comes with a FLASH-resident language interpreter. The assembly and
debugging tools are running on an IBM PC or compatible.

E-300 2

Figure 1: The E-300 Controller

R
S-

48
5

Se
ria

l L
in

k

8
Si

m
ul

ta
ne

ou
s

Ta
sk

s

64
 k

B
yt

es
Fl

as
h

Pr
og

ra
m

St
or

ag
e

64
 k

B
yt

es
B

ac
ku

p
R

AM

D
at

a
St

or
ag

e

Pe
rip

he
ric

D
ev

ic
es

M
ot

io
n

G
en

er
at

or
Ax

is
 0

80
18

8E
B

Pr
oc

es
so

r

M
ot

io
n

G
en

er
at

or
Ax

is
 1

E-300 2

2. ELEMENTS OF THE LANGUAGE

2.1. Legal Characters

Only the characters listed hereafter are legal within an E-300 program.
- Decimal Figures: 0, 1, .., 8, 9,

- Lower Case Letters: a, b, .., y, z,
- Upper Case Letters: A, B, .., Y, Z,
- Special Characters: + - . $ / % * \ ? # !

 , : ; Space Carriage Return Tab EOF

 "" '' <> () = _ {} []

- Space and Tabs at the end of the line, Line Feed ($A), Form Feed ($C) and End Of File ($1A)
characters are transparent to the assembler.

The meaning and the usage of the special characters will be described in the following sections.

2.2. Numbers

The E-300 assembler accepts decimal and hexadecimal integers and floating-point numbers given in
decimal notation.
An INTEGER is a decimal number or an hexadecimal number in the range +-2^31, (-2'147'483'648 to
+2'147'483'647).
An ORDINAL is a positive integer in the range 0 to (2^32)-1.
The assembler recognizes a decimal number as an integer if it is written without a decimal point. An
hexadecimal number, with the $-prefix, must be a positive integer.

 1 123 -4 -123456 $18AB
are integers.
It is also possible to give the ordinal value of one or several ASCII characters. The characters are
enclosed in single or double quotation marks.
Examples: 'A' = $41

"AB" = $4142
'ABCDEF' = $43444546

Maximum capacity is 4 characters, or the last 4 of a long string.
A FLOATING-POINT NUMBER is a real decimal number with an absolute value ranging of ±9.2E18. The
assembler recognizes a floating-point number if the decimal number is written with the decimal
point or in scientific notation.

E-300 2

3. 3.0 -3.1415 1.294E4 .45E-5
are floating point numbers.
Notes: a) 1.294E4 = 1.294E+4 = 12940.0

b) Space characters are not allowed within a number.
c) Always use the decimal point, never the comma.

2.3. Symbols

A symbol is a name built in accordance with the following rules:
 - it starts with a letter,
 - the second and following characters can be letters or decimal figures,
 - it contains neither special characters nor space (except ' _ ' underscore),
 - the number of characters is limited to 32.

The assembler has values for the dedicated symbols (see appendix A), and assigns values to user
defined symbols. The different methods of defining symbols are to be found in chapter 4.

2.4. Strings

A STRING is a sequence of ASCII characters and/or ordinals enclosed in <...>. ASCII characters must
be designated by single or double quotation marks. The ordinals in a string are interpreted as the code
of an ASCII character. The Carriage-Return and Line- Feed characters introduced through the keyboard
are transparent in a string; if they are required, they must be represented by their numerical equivalent
$D and $A.

<'abcd'> <65,"BCD",$D,$A,'EFG'> are strings.

2.5. Statements

Statements are "sentences" made from the above elements and written in such a way as to be
understood by the assembler. Certain statements produce code sequences, i.e. program or data sto-
rage, other, merely direct the operation of the assembler.
A statement normally starts at the beginning of a line and terminates at the Carriage Return character.
However, a statement may be broken into several lines if a comma is used at the end of each line but
not at the last one.

E-300 2

FADD RA, RB, RC is a statement,

CALL PROC PAR1, PAR2, PAR3 can be written as

CALL PROC PAR1,
PAR2,
PAR3

2.6. Comments

A COMMENT is fully transparent to the assembler. Thus, a comment can be written after a statement
without affecting the syntax. All ASCII characters are allowed in comments.
A single line comment starts with a semi-colon (;) and terminates with a Carriage Return.
A bloc of comments is a text enclosed in braces {....} .

E-300 2

3. CODE GENERATING ELEMENTS

The purpose of this chapter is to present the language elements generating executable code. The
reservation of data storage space with or without significant contents is dealt with in chapter 4.
Instruction mnemonics are a trivial case of a code generating items. Most instructions need one or
several operands -or arguments- to specify their actions. Unlike most assembly languages, the E-300
language uses a specific prefix code for each different kind of arguments. This prefix will be called the
type of that particular argument. For example, a two-byte integer as an immediate argument has not the
same prefix as a variable defined to hold a two-byte integer. The type prefix allows the design of an
instruction set where a given instruction can operate on many different items while retaining formally the
same syntax. The prefix code is automatically generated by the assembler.
The E-300 assembler makes the difference between lower case and upper case letters. All the
mnemonics and assembler directives must be written with upper case letters.

3.1. Instruction

The code for an instruction mnemonic is one byte in length. The most significant bit is always 1.

3.2. Immediate Arguments

An immediate argument is an operand whose value is written directly into the instruction. Immediate
arguments can be numbers or strings. The table 3.2 gives all possible immediate arguments.
Comments to Table 3.2:
- The code of an immediate string has a 1-byte string length just after the prefix.
- The integers 0 and 1 can be used as immediate boolean elements in relevant instructions

(except in complementing instructions). They are coded by the assembler as "short immediate
integers".

E-300 2

Table 3.2. Immediate Arguments

TYPE RANGE

 Short Immediate Integer

 1-byte Immed. Positive Integer
 2-byte Immed. Positive Integer
 3-byte Immed. Positive Integer
 4-byte Immed. Positive Integer

 1-byte Immed. Negative Integer
 2-byte Immed. Negative Integer
 3-byte Immed. Negative Integer
 4-byte Immed. Negative Integer

 Immed. Pos. Floating-Point Number
 Immed. Neg. Floating-Point Number
 Immediate String

 0..7

 0..255
 0..65535
 0..16'777'215
 0.. 2'147'483'647

 -1..-256
 -1..-65536
 -1..-16'777'216
 -1..-2'147'483'648

 0....9.2E+18 approx.
-9.2E18..-2.7E-20 approx.
 250 characters

3.3. Variables as Arguments

A variable is a fixed area within the storage space (or within the physical environment) able to hold one
or several items of the same type. According to the nature of the contents of a variable, we shall speak
about "numerical variables", "boolean variables" and "string variables". When a variable holds more than
one item, it becomes an "array".
When an instruction has a variable as argument, it operates on the contents of that variable.
A variable is fully defined if the assembler has its address (the physical address of the first byte of the
area) and its type. The programmer has to use a symbolic name for each variable and the syntax of
chapter 4 to define the type and the size of the array. Whenever a variable is invoked by an instruction,
its code prefix will tell the instruction how to fetch and how to store its contents.
According to its nature or according to the intended use by the programmer, a variable can be stored in
different areas:
- a FLASH-Variable resides in the FLASH MEMORY user segment,
- a RAM-Variable resides in the RAM user segment,
- a SYSTEM-Variable resides in the RAM system segment.

(Refer to Figure 1.)
See the table 3.3 for a list of the available variables with their generic names. These names are
recognized by the assembler; the assembler assigns the address 0 to these variables. With a suitable
offset or index (see hereafter), these variables can access any storage location, see also section 4.4.

E-300 2

Table 3.3. Variables

FLASH RAM SYSTEM CONTENTS RANGE of CONTENTS

VO1F
VO2F
VO3F
VO4F

VI1F
VI2F
VI3F
VI4F

VFF

1)
1)

VSTRF

VO1R
VO2R
VO3R
VO4R

VI1R
VI2R
VI3R
VI4R

VFR

1)
1)

VSTRR

VO1S
VO2S
VO3S
VO4S

VI1S
VI2S
VI3S
VI4S

VFS

VBS
/VBS 2)

VSTRS

1-bytes Ordinal
2-bytes Ordinal
3-bytes Ordinal
4-bytes Ordinal

1-bytes Integer
2-bytes Integer
3-bytes Integer
4-bytes Integer

Floating-Point
Number (4-bytes)

Boolean Element
Inverted Boolean

String

0..255
0..65535
0..16'777'215
0..2'147'483'647

-128..+127
-32'768..+32'767
-8'388'608..+8'388'607
-2'147'483'648..+2'147'483'647

approx. –9.2E18..+9.2E18, smallest
number is 2.7E-18

0 or 1
1 or 0

250 characters max

1) Flash and Ram variables are dedicated variables; no generic name will work.
2) An inverted boolean variable has a slash in front of its name (/ OR \). When used as a source

argument, the contents of the slashed variable is inverted before the operation; as a destination
argument, the result is inverted before storage.

Tables of all dedicated variables are to be found in Appendix A. Dedicated variables have special
functions within the E-300. The assembler already has definitions several dedicated variables, for other,
an included definition file with equate statements must be part of the assembly.
In order to address an item within an array, an offset is appended to the variable name. The offset must
be an integer (positive or negative) and can be regarded as the order number of that item in the array.
The offset is enclosed in parentheses (..) or in brackets [..]. The offset is not applicable to strings.
In the examples which follow, the mnemonic VAR is used to designate a variable regardless of its type
(except strings).
Examples: VAR1 points to the item nb 0 in the array VAR1

VAR1(6) points to the item nb 6 in the array VAR1.
VAR1(-15) points to the 15th item before the array VAR1.

In some special cases, the programmer does not want an offset according to the type of the variable but
rather an offset in bytes. This will allow dismantling of numbers and strings or access to peripherals not
directly supported by the language. The syntax is as follows:

VAR1(BP 3) points to the byte nb 3 in the array.
VAR1(2+BP 3) points to the byte nb 3 of the item nb 2.

BP stands for "Byte Pointer". For single byte variables, BP can be omitted.
The code for a variable is made of the type prefix and a two-byte address. The assembler evaluates the
contents of the parentheses and adds that value to the address of the variable.

3.4. Registers as Direct Arguments

The general purpose registers mentioned in chapter 1. are very often used as direct arguments in
instructions. Remember that each subroutine nesting level and each simultaneous program has its own
set of 6 registers, RA to RF.
Unlike other argument types, the coding of register arguments does not carry information about the
nature of the contents. When an instruction loads a register with an integer shorter than 4 bytes, it

E-300 2

extends the number to 4 bytes with correct sign propagation. When storing a register contents into a
variable with a short type, truncation eventually occurs.

3.5. The "Program Number" as a Direct Argument

The Program Number, PNB, is a special variable which holds the ordinal 0 to 7 according to the
simultaneous program being executed. The PNB allows the programmer to direct a procedure to
operate on different items in different simultaneous programs. In other words, using PNB as index
promotes the writing of re-entrant routines.

3.6. Dummy Arguments

Dummy arguments are used within a procedure to reference parameters appended to the procedure
call. This matter will be discussed in length in section 6.5. Like a variable array, the dummy arguments
belong to an ordered set and they must be written with an offset. 256 dummy arguments are available.
Syntax:

% or %(0) %(5) %(15) 255 is max. offset.
Let us mention here the "Phantom Parameter", a matter related to the procedure call. When an asterisk
is written in lieu of a parameter in a procedure call, the instructions of the procedure referencing this
parameter are executed as No-Operation, see also section 6.5.

3.7. Indexing

Most variables -numerical, boolean or string variables- form ordered sets of items or arrays. The
programmer will usually attempt to use the same program loop or the same procedure to operate on
different items in the set. For example, a motion procedure can be used with any one of the 4 axes by
merely changing the contents of an index.
All variables and the dummy argument can be indexed.
The following elements can be used as index:
- The registers RA to RF,
- The integer and ordinal type variables without offset or index, i.e. indexing can not be nested.

The registers RA to RF themself do not form an indexable set.

E-300 2

Syntax examples: VAR1(RA)
VAR2(5+RB)
VAR3(3+5+RA+RB)
VAR4(RA-4)
%(2+RF)
%(PNB)
VAR1(VAR5)
VAR1(VAR5+2)
VAR1(VAR5+RA+1)

For the third example, the assembler computes the offset 3+5 = 8, modifies the address according to
the type of VAR3 and then appends the codes for the index RA and for the index RB. During execution
of the program, the interpreter will add the contents of RA and RB and modify once more the address
according to the type of VAR3. If VAR3 is of the "3-byte integer" type, the indexing step is 3 bytes. If the
variable is of the "string" type there is no fixed step expressed in bytes , but the indexing mechanism
steps through the strings. The result of the expression contained in the parentheses can be negative, but
the minus sign can't be written in front of a register or a variable name:
Wrong syntax: VAR1(5-RA)

VAR2(5-VAR5)
VAR3(VAR5(RA))
VAR4(VAR5(3))

As is the case with the offset, it may be advisable to index directly in bytes. The type of the indexed
variable is then immaterial.
Syntax examples: VAR3(BP VAR1)

VAR4(BP RA+BP RB)
VAR5(BP 4+BP RC)
VAR6(3+BP RA+RD)

The last example shows that mixing the two indexing methods is legal.

3.8. Labels and Addresses

A LABEL is a symbol (max. 32 characters), whose value is an address within an executable program.
Labels are the arguments of program control instructions. The assembler codes a label argument as a
2-byte immediate positive integer.
When an instruction needs the ADDRESS of a variable rather than the variable itself, the programmer
has to prefix the variable name with a # . The assembled code for such a parameter is again a 2-byte
immediate positive integer.
Examples:

MOV RA,VAR The contents of VAR is moved to RA
MOV RA, #VAR(4) The address of VAR(4) is moved to RA

The character # is legal in front of a variable with offset, but it cannot be assembled with an indexed
variable.
Wrong use of #:

MOV RA, #VAR(RB)
The character # is not legal with boolean variables.

E-300 2

4. SYMBOL DEFINITION, VARIABLE DEFINITION AND ASSEMBLY DIRECTIVES

This chapter deals with syntax elements and statements which do not generate executable code, but
provide the assembler with user symbol definitions and direct its operation.

4.1. Definition of Labels.

As already mentioned, a LABEL is a symbolic address within the executable code. Symbolic addresses
referencing the data storage space are "variables" and we know from chapter 3 that their coding is
different.
A symbol is defined as a label if
- it has a colon (:) appended,
- it is not followed by a "definition directive", see next section.

While generating the code, the assembler holds a location counter -or byte counter- and when a label
definition is encountered, it uses the contents of the location counter to assign a value to the label.
Syntax examples:

LABEL: AND DEST, SRC
....
START: JMP LABEL

If there is no instruction between two labels, they will have the same value.

4.2. Variable Definition

To define a variable, the programmer has to provide the assembler with
- the name of the variable,
- the address of the variable,
- the type,
- the size of the array,
- optionally, its initial contents.

The name and the address are given by the colon definition as in section 4.1.
The "definition directives" provide the information about what the variable is intended to hold. The table
4.2 lists all definition directives, see also the table 3.3.
Boolean variables are not defined by a directive. All the boolean variables are dedicated variables
already known by the assembler. However, the programmer can rename the boolean variables by
equivalence statements, section 4.4.
For syntax examples, see the next section.

E-300 2

Table 4.2: Variable Definition Directives

STORAGE AREA CONTENTS of VARIABLE
DEFINITION
DIRECTIVE

 FLASH
 FLASH
 FLASH
 FLASH

 FLASH
 FLASH
 FLASH
 FLASH

 FLASH

 FLASH

 RAM
 RAM
 RAM
 RAM

 RAM
 RAM
 RAM
 RAM

 RAM

 RAM

 1-byte Ordinal
 2-byte Ordinal
 3-byte Ordinal
 4-byte Ordinal

 1-byte Integer
 2-byte Integer
 3-byte Integer
 4-byte Integer

 Floating Point Number

 String

 1-byte Ordinal
 2-byte Ordinal
 3-byte Ordinal
 4-byte Ordinal

 1-byte Integer
 2-byte Integer
 3-byte Integer
 4-byte Integer

 Floating Point Number

 String

 DO1F
 DO2F
 DO3F
 DO4F

 DI1F
 DI2F
 DI3F
 DI4F

 DFF

 DSTRF

 DO1R
 DO2R
 DO3R
 DO4R

 DI1R
 DI2R
 DI3R
 DI4R

 DFR

 DSTRR

4.3. Initial Contents of Variables.

The programmer can instruct the assembler to assign contents to the variables. These contents are
written into the storage area when the program is down loaded to the system. FLASH-located
variables must have an initial contents specified, or they must be written by program during running
time. For RAM variables, an initial contents may be useful for test purpose, but the program must
have provision to fill the RAM variables with the appropriate values as part of the power-up sequence.
For RAM-located string variables, some sort of initial contents is always required to enable the
assembler to compute the necessary storage allocation. A string variable is stored as a chain of
ASCII characters preceded by one byte giving the length of the chain. Therefore, the length of the
chain must be set by the program at power up for RAM located string variables.
The size of the variable array is implicitly given if initial contents are specified. To reserve an array
where each position is initially filled with the same contents, the programmer can use the "Duplicate"
directive,
n DUP. The DUP directive works properly for string variables if all strings in an array have the same
length.
Initial contents are given by explicit numerical or string values. When a quotation mark (? or !) is
used as an initial value, the storage locations are left unchanged while down loading the program.
Syntax Examples:

VAR1: DO1R ? ; reserve space for one 1-byte ordinal in RAM
VAR2: DFF 1.2, 2.34 ; array of 2 float. numbers, contents specified
VAR3: DI4R 16 DUP ? ; space for an array of 16 4-byte integers

E-300 2

TEXT1: DSTRF <"abcd">,
<"pqrst", $A,$D,"uvwxyz"> ; 2 strings with specified text

TEXT2: DSTRF 6 DUP <"------------"> ; reserve space for 6 strings of 12
; characters in length

4.4. Generic Variables.

The assembler has a set of generic variables defined a address 0. They are intended to access any
storage locations with a suitable offset or to define specific variables by equivalence statements. The
table 4.4. lists the generic variable names.
Examples:

MOV VI3R(BP $13), RA ; deposits a 3-byte integer at RAM address 13 hex

MOV RA, VO1F(BP 1000) ; fetches a single byte ordinal from FLASH location 1000 ;
decimal

MOV VFR(BP$8000+RB), RA; deposits a floating number at RAM address
; (8000 hex + 4.<RB>)

E-300 2

Table 4.4. The Generic Variables

NAME TYPE LOCATION

 VO1F
 VO2F
 VO3F
 VO4F
 VI1F
 VI2F
 VI3F
 VI4F
 VFF
 VSTRF

 VO1R
 VO2R
 VO3R
 VO4R
 VI1R
 VI2R
 VI3R
 VI4R
 VFR
 VSTRR

 VO1S
 VO2S
 VO4S
 VI1S
 VI2S
 VI4S
 VFS
 VBS
 /VBS

 1-byte ordinal
 2-byte Ordinal
 3-byte Ordinal
 4-byte Ordinal
 1-byte Integer
 2-byte Integer
 3-byte Integer
 4-byte Integer
 Floating Number
 String Variable

 1-byte ordinal
 2-byte Ordinal
 3-byte Ordinal
 4-byte Ordinal
 1-byte Integer
 2-byte Integer
 3-byte Integer
 4-byte Integer
 Floating Number
 String Variable

 1-byte Ordinal
 2-byte Ordinal
 4-byte Ordinal
 1-byte Integer
 2-byte Integer
 4-byte Integer
 Floating Number
 Boolean Variable
 Inverted Boolean Var.

 FLASH
 FLASH
 FLASH
 FLASH
 FLASH
 FLASH
 FLASH
 FLASH
 FLASH
 FLASH

 RAM
 RAM
 RAM
 RAM
 RAM
 RAM
 RAM
 RAM
 RAM
 RAM

 SYSTEM
 SYSTEM
 SYSTEM
 SYSTEM
 SYSTEM
 SYSTEM
 SYSTEM
 SYSTEM
 SYSTEM

4.5. Equivalence Statements.

An equivalence statement has the general syntax:
SYMBOL = RM (RM = Right Member)

The assembler assigns the value of the right member to SYMBOL. This implies that:
- the RM is already defined or known by the assembler,
- SYMBOL will have the same type as RM.
- SYMBOL can be used in the program after this equivalence statement only.

All items of the E-300 assembly language can be the right member of an equivalence statement,
numbers, strings, variables with offset, instruction mnemonics, or labels. A right member with
operational capabilities is not allowed. RM can not be an instruction with arguments or an indexed
variable.

E-300 2

Examples:
Statement Type of Defined Symbol

NUM1 = 5 1-byte Integer
NUM2 = 3.1415 Floating Number

VAR2 = VAR1(5) Same as VAR1
ADD = # VAR1(5) 2-byte Integer

START = IN(12) Boolean
STOP = /IN(2) Inverted boolean

TEXT = <"E-300"> String

OP = IADD Instruction

VAR3 = VAR1(NUM1+3) Same as VAR1, NUM1 is a number, not a variable

TEMP = VO3R(BP $1000) 3-byte Ordinal

4.6. The ORG Directive

The assembler has to know where a section of code -either a program segment or a data area- has to
be physically stored into the E-300 system. The ORG (ORiGine) directive transfers the value of its
argument to the location counter. The argument of ORG must be an ordinal number or an already
defined symbol, whose value is an ordinal.
Example:

ORG $D00 ; set RAM location counter at $D00

VAR1: DO4R 2 DUP ? ; add 8 to RAM location counter
VAR2: DFR ? ; add 4 to RAM location counter

; now RAM loc. counter holds $D0C

ORG $4010 ; set ROM location counter at $4010

STRT: MOV RA, 10 ; add 4
MOV RB, $1FF ; add 5 to ROM location counter
.................
.................

TEXT: DSTRR <"-----">; add 6 to RAM location counter
.................
.................

4.7. The END Directive.

An assembly terminates properly only if the directive END is present in the last line of the program. A
carriage return must terminate this line. The END directive can be used with an argument giving the
auto-start address of the program. Without an argument, the program can only be started in the
debugging mode.
Syntax: END label
4.8. The INCL and PATH Directives.

The INCLude directive tells the assembler to get a source program file from the disk and assemble
this file into the program just being assembled. This directive allows the partitioning of source
programs for easy editing. Standard procedures may be introduced into a program by this directive.

E-300 2

The program being assembled and all the included files form a single program. Thus, all symbols
must be different.
The included files must terminate with an END directive without argument. 64 files maximum can be
included. INCL does not support nesting, i.e. the INCL directive is not allowed within an included file.
Syntax: INCL (Drive:\Path\FileName.Ext)

Note: In the parentheses, lower case letters are treated as upper case letters. (Max. 20 characters,
spaces ignored).

Example: INCL (C: \UNIP \LIB \JOG.OVL)
INCL (C: \UNIP \LIB \POS.OVL)

The PATH Directive
The PATH directive causes specified directory to be searched for Included Files not found by a
search of the current directory. Thus, it is not mandatory to specify the path in the INCL directive.
Syntax: PATH (Drive: \Path \)
PATH must be written before the INCL directive.
Note: In the parentheses, maximum 20 characters are permitted. Default Path is the current

directory.

Examples: PATH (C: \UNIP \LIB \)
INCL (JOG.OVL)
INCL (POS.OVL)

4.9. The MODule Directive.

This directive is required for multi controller systems. If one controller is used, the programme must
begin with the directive:

MOD 1
Important notice:
The directives ORG, END, INCL, PATH, MOD must be the sole item in a program line. A label in front
of these directives is not allowed, an instruction or an other directive is not legal in the same line.
Comments are allowed. A carriage- return character always terminates a directive.

4.10. The LISTON and LISTOFF directives.

Any source lines between LISTON and LISTOFF are assembled but masked on the screen and in the
listing file (made with F6).
Example:

code or data lines a)
.
.
.
LISTOFF
.
.
code or data lines b)
.
.
.
LISTON
.
.
.
code or data lines c)
.
.

E-300 2

The lines a) and c) are visible, the lines b) are hidden.

E-300 2

5. E-300 MEMORY ORGANIZATION, DEBUG MODE

The INTEL 188 processor has an Harvard architecture, i.e. the program store and the data memory
are physically distinct, they are selected by different strobes but they use the same address span: 0 to
FFFF hex. The program memory is usually made of read-only chips and the data memory is made of
read-write chips. The E-300 departs from this strict Harvard organization in order to provide a
Debugging Mode and a Program Bootstrap Zone. The processor strobes and the chip selects sent
to memory chips are made mode and address dependent by a combinatorial logic. The resulting
organization is depicted in Figure 5.

Figure 5.: E-300 Memory Organization

System reserved

System variables

System reserved

FL
A

SH
 1

28
 K

 R
A

M
 1

28
 K

System reserved

System reserved

User Code and Data

User Code and Data

FFFFFh

00000h

0000h

FFFFh

0100h

0000h

FFFFh

0100h

0000h

APEX addresses Processor addresses

E-300 2

Comments about Figure 5.:
1. The RUN Mode is the normal operating mode of the E-300; the Debug Mode is introduced

by the Power-Up Utility, see next section.
2. The program memory is made of a 128 kbytes FLASH. The upper half of the FLASH is used

by the language interpreter and is normally not available to the E-300 programmer.
3. The data memory is made of a 128 kbyte CMOS RAM with battery back-up. The lower half of

the RAM is used by the language interpreter and is not available for the programmer except
the system variable segment.

5.1. The POWER-UP Utility

If the F10 key is depressed while switching the power on, a special hidden utility is entered. The
display prompts for the selection of one of 4 functions (key F1 to F4). The screen also shows the
version of the interpreter.

E-300 1.00 09.30.99

RUN DEB FPR BAUD

Note for N300: An Initialization Key is plugged on the J2 (input) connector during power-up. When
using the Key, make sure that it has all bits are set correctly.

1) The F1 (RUN) key enters the RUN Mode menu. To start the program stored in the FLASH,
depress the F4 (GO) key ("RUN MODE" is displayed). The start address of the E-300
programmes is 0 in the FLASH. (The ESCape key returns to the basic selection menu if
depressed before F4.)

2) The F2 (DEBUG) key enters the DEBugging Mode menu.

A normal debugging session begins with the depression of F3 (HOLD) and waits for data
from the A-300 development tool ("DEBUG MODE HOLDING" is displayed):
Loading a program from the Debugger, 'T' Transfer command:
With this command, the object code can be downloaded into the RAM segment.
Running a program from the Debugger, 'R' Run command
A program in the RAM segment can be started with this command. The execution starts at the
address offset loaded in the Run vector (located at address 0 RAM).
If an already tested program resides in the RAM, it is possible to directly run the program
again by depressing F4 (GO) instead of F3.

3) The F3 (FPR) key enters the flash programming utility. To start programming of the FLASH
from the RAM depress F4 (PROG).

During programming (about 15 seconds) the message "Flashing page xxx" is displayed. The
message "FLASH OK,press a key" terminates the programming.

The action of the Flash programming is illustrated in figure 5.1.

System reserved

 F
LA

SH
 1

28
 K

System reserved

User Code and
Data

User Code
and Data

System reserved

 F
LA

SH
 1

28
 K

System reserved

User Code and
Data

User Code
and Data

E-300 2

Figure 5.1. Flash Programming.

4) The F4 (BAUD) key enters the RS-485 baud rate selection. Press F1 to select 9600 bauds,
F2 for 19200 bauds. At power-up, the default rate is 9600 bauds.

E-300 2

6. E-300 INSTRUCTIONS

An instruction statement is composed of the following elements:
- an optional label,
- an instruction mnemonic,
- one or several arguments separated by a comma.

The arguments can be immediate values, variables, registers or dummy arguments (See also
section 6.5 for the phantom parameter utilization).
An instruction always operates on the immediate argument itself but on the contents of a variable or
of a register. Remember that a label used as an argument is an immediate argument. The same
holds for a #-prefixed variable.

6.1. Two-operand Arithmetic Instructions

This instruction class is basically a "three address" class: the operation is performed between the two
source arguments and the result is sent to the destination argument. The instructions in this class can
also be used with two arguments only: the operation is then performed between the destination and
source arguments.
When two different instructions must be provided for an operation on integers and on floating-point
numbers, the same mnemonics is used with a I- or a F- prefix.
Syntax a)

INSTR dest, src1, src2

Syntax b)

INSTR dest, src

where INSTR stands for the mnemonic of the instruction; dest, src1, src2, src are arguments.
Action of syntax a): <dest> = <src1> * <src2>

Action of syntax b): <dest> = <dest> * <src>

where * stands for the operator effected by INSTR, and <...> means "the contents of".
The instructions are listed below with reference to syntax a), going to syntax b) is a straightforward
matter.
The contents of the source arguments remain unaltered.
Three flags are affected by the result of most arithmetic instructions, either of the two-operand or of
the single operand class.
- The Zero Flag, ZF, is set if the result is zero,
- the Sign Flag, SF, is set if the result is negative,
- the Odd Flag, ODF, is set if the result is an odd number, Integer Addition:

IADD dest, src1 src2 <dest> = <src1> + <src2>
Integer Subtraction:
ISUB dest, src1 src2 <dest> = <src1> - <src2>
Integer Multiplication:
IMUL dest, src1, src2 <dest> = <src1> * <src2>
The addition, subtraction and multiplication are effected in accordance with the rules of the two's
complement arithmetic. The arithmetic unit has a width of 4 bytes; the source operands are expanded
according to their types; truncation of the result eventually occurs if required by the type of the
destination.
Floating-Point Addition:

E-300 2

FADD dest, src1, src2 <dest> = <src1> + <src2>
Floating-Point Subtraction:
FSUB dest, src1, src2 <dest> = <src1> - <src2>
Floating-Point Multiplication:
FMUL dest, src1, src2 <dest> = <src1> * <src2>
Floating-Point Division:
FDIV dest, src1, src2 <dest> = <src1> / <src2>
The Overflow Flag, OVF, will be set if |<src2>| < 1.0E-5.
Integer Division:
(Invariable syntax)
IDIV dest1, dest2, src1, src2 <dest1> = int <src1> / <src2>

<dest2> = <src1> modulo <src2>

The Overflow Flag, OVF, will be set if <src2>=0.
Logical Bit-by-Bit Multiplication (AND):
AND dest, src1, src2 <dest> = <src1> & <src2>
Logical Bit-by-Bit Addition (OR):
OR dest, src1, src2 <dest> = <src1> V <src2>

Logical Bit-by-Bit Modulo 2 Addition:
XOR dest, src1, src2 <dest> = <src1> + <src2>
Logic instructions make sense when operating on integer and boolean elements.

6.2. Single Operand Arithmetic Instructions

This class of instructions can be written with one or with two arguments. The syntax a) will save a
subsequent MOV instruction in most situations.

Syntax a)

INSTR dest, src
Syntax b)

INSTR src

Action of syntax a): <src> is transferred to dest after alteration commanded by the instruction.
The contents of src remains unaltered.

Action of syntax b): <src> is altered by the instruction and rewritten into src.

Unless indicated, the flags are set according to the result, see section 6.1.

Integer/Floating-Point Negation:
INEG dest, src
 <dest> = - <src>
FNEG dest, src
Integer/Floating-Point Absolute Value:
IABS dest, src
 <dest> = |<src>|
FABS dest, rc

E-300 2

Note: The Sign Flag is set according to the sign of <src>.
Logical Bit-by-Bit Complement of an Integer:
CPL dest, src <dest> = /<src>
Integer Incrementation:
INC dest, src <dest> = <src> + 1
Integer Decrementation:
DEC dest, src <dest> = <src> - 1
Floating-Point Inversion:
INV dest, src <dest> = 1/<src>
The Overflow Flag, OVF, will be set if |<src>| < 1.0E-5.
Floating-Point Square:
SQU dest, src <dest> = <src>2
Floating-Point Square Root:
SQR dest, src <dest> = <src>½
The Overflow Flag, OVF, will be set if <src> < 0.0.
Note:
The argument of a trigonometric function is supposed to be given in radian if the RAD flag is set.
Otherwise, the argument is given in degrees. Automatic "first quadrant reduction" is provided.
Floating-Point Sine:
SIN dest, src <dest> = sin<src>
Floating-Point Cosine:
COS dest, src <dest> = cos<src>
Floating-Point Tangent:
TAN dest, src <dest> = tan<src>
The Overflow Flag, OVF, will be set if <src>= 6π(2n+1)/2.
Floating-Point Arc-Tangent:
ATN dest, src <dest> = Arctan<src>
Integer to Floating-Point Conversion:
CFLO dest, src
The integer in src is converted to a floating-point number and written to dest.
Floating-point to Integer Conversion:
CINT dest, src

CINR dest, src

The floating-point number in src is converted to an integer and written into dest. CINT effects a
conversion with truncate, CINR uses a commercial rounding procedure.

6.3. Miscellaneous Instructions

Data Move:
MOV dest, src
The contents of src is copied to dest. <src> remains unaltered.
Data Exchange:
XCHG src1, src2
The contents of src1 and src2 are exchanged.
MOV and XCHG operate on integer, floating-point and boolean arguments. No arithmetic flags are
affected by these instructions. Arguments may be of different type but some adjustments will be
made:
Example:

E-300 2

MOV FLG(0), 455 ; <FLG(0)> = 1, (FLG is a boolean variable)

Data Bloc Move:
XFER dest, src, element_nb
 - element_nb = number of elements (size of the bloc), 0 <= element_nb <= 65535.

A bloc is copied from source to destination, the element type is given by the type of dest. If source
and destination zones are overlapping, the source is partially destroyed and the destination contains
the entire copy of the bloc. If not, the source is not altered.
Rotate an Integer:
ROT1 dest, src, n n = -7..+7
ROT2 dest, src, n n = -15..+15
ROT3 dest, src, n n = -23..+23
ROT4 dest, src, n n = -31..+31

The contents of src is rotated n bit-places and the result is written to dest. If <n> is positive, the shift is
to the left, if <n> is negative, the shift is to the right. <n> can be any argument, not necessarily an
immediate number.
ROT1 rotates the least significant byte only, recirculating the most significant bit into the least
significant for positive n and the least significant bit into the most significant for negative n. ROT2,
ROT3 and ROT4 rotate 2, 3 or 4 bytes respectively, see figure 6.3.
The flags are set according to the result. The Sign flag is set if the most significant bit after the
rotation is 1.

E-300 2

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
A
7

B
6

C
5 4 3 2 1 0 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
C
7 6 5 4 3 2 1 0 7 6 5 4 3 2

A
1

B
0

FULL REGISTER LENGTH =4 BYTES

Figure 6.3. "ROT2 dest, src, 2"

A 2-argument syntax is also accepted:
ROTi src, n
The rotated <src> is rewritten into src.
Number Comparison:
ICMP src1, src2 For two's complement integers

FCMP src1, src2 For floating-point numbers

The contents of src1 and src2 are not altered. The flags are set according to the result of the
operation <src1> - <src2>:
 <src1> = <src2> ZF = 1, SF = 0
 <src1> < <src2> ZF = 0, SF = 1
 <src1> > <src2> ZF = 0, SF = 0

The comparison instruction can also be used with three arguments, it becomes a "range comparator".
ZF is set if <src1> is in the range <src2>...<src3>. The range includes the boundaries. See figure
6.3bis.
ICMP src1, src2, src3

FCMP src1, src2, src3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

E-300 2

<src2> <src3> +

<src3> <src2> +

ZF = 0 ZF = 1 ZF = 0

Figure 6.3bis: Range Comparison

String Comparison:
SCMP src1, src2
"src1" and "src2" are string type.
Function:
The ZF flag is set if both strings are indentical, character by character, and if the lengths are the
same.
SET to One:
SET dest1, dest2, ... destn
RESET to Zero:
RES dest1, dest2, ... destn
These two instructions can have any number of destination arguments appended. The type of the
variables can be mixed.
If the destinations are boolean variables, the action of SET and RES is straightforward. With integer
or ordinal variables as destinations, SET sets the words to exactly 1, RES to all 0's. RES works
properly with floating-point variables too. If a SET or a RES is followed by a variable declaration, an
operation code (instruction) must be inserted.
Example:

RES a, b, c, SAF(PNB)
NOP

VAR: DO1R ?

No flag is affected.
Caution:
A situation arises, where a RES instruction is not necessarily followed by an operation code: the
termination of a simultaneous program by the instruction RES SAF(i). The interpreter may not be able
to stop the decoding of the arguments. A NOP after the RES SAF(i) instruction will cure the problem.

Return the Address of a Variable:
ADDR dest, var
Action:
The address of "var" is returned to "dest". "var" can be any defined numerical variable, with or
without an offset, with or without an index expression.
No Operation:
NOP No action, can be used to trim timing loops.

6.4. Program Control Instructions

Unconditional Jump:
JMP label Direct jump to "label"

JMP var Indirect jump, i.e. jump to the contents of "var".

E-300 2

"label" must point to a location within the program area.
Upon execution of a JMP, the program execution is transferred to the location "label" or to the
location <var>.
Example of indirect jump: The programmer wants to jump to several locations according to the
contents of register RA.

JMP JMPTABLE(RA)
NOP

JMPTABLE: DO2F LABEL0,
LABEL1,
LABEL2,
..………,
LABELn

In this special case, it is allowed to define the variable JMPTABLE after its use by the indirect JMP
instruction, despite the rule of section 4.2. This is made possible by the fact that a VO2 variable is
assumed as the unknown argument of a jump.
The NOP instruction after the indirect JMP is required to allow unambiguous decoding of the
argument. The decoding process assumes arguments until an op-code is encountered.
In the above example, it will be good practice to test the range of the RA contents before the jump.
Conditional Jump:
Conditional jumps allow branching upon the contents of one boolean variable or upon the
combination of several variables. The instructions can be used in two different manners:
a) J(condition) label Direct Branch to "label"

J(condition) var Indirect Branch to the contents of "var"

b) J(condition) var2, label Direct Branch
J(condition) var2, var1 Indirect Branch

With syntax a), the actual status of the flags (ZF, SF, ODF, OVF, NPAR, PHP) is tested. The form a)
is normally used to test the result of arithmetic and logic operations using the flags left by the
instruction. A conditional jump with syntax a) is required after execution of a comparison instruction.
With syntax b), the variable "var2" itself is tested. The flags of the arithmetic unit, ZF, SF, ODF are
not affected.
The mnemonics accepted by the E-300 assembler are listed in the table 6.4. For convenience,
several conditions have two names. For example, JE (Jump if Equal) is a synonym for JZ (Jump if
Zero). JE will be used after a comparison instruction.
The syntax b) is not applicable to the instructions marked with an asterisk in the table 6.4.
The syntax a) is not applicable to the instructions marked with two asterisks in the table 6.4.
The conditional jump instructions, which imply a comparison -such as JE, JNE, JLT, JGT, JLE and
JGE- refer to the result of instruction ICMP or FCMP, where <src1> is compared upon <src2>.
Examples:

a) ICMP RA, 100
JLT Smallra ; Branch if <RA> < 100
JGT Largera ; Branch if <RA> > 100
....... ; <RA> = 100

b) JZ RF, Rfzero ; Branch to "Rfzero" if
; <RF> is Zero. The flags are not affected.

The instructions JT and JF are alternate mnemonics for JOD and JEV. They are used especially to
test inputs, outputs and single- byte ordinal variables used as boolean variables. The test is made on
the least significant bit of the variable, see Table 6.4.

E-300 2

Table 6.4. Conditional Jumps:
MNEMONICS ACTION BRANCH CONDITION

 JE
 JNE
 JZ
 JNZ
 JLT
 JM
 JGT
 JLE
 JGE
 JP
 JOD
 JEV
 JT
 JF
* JOV
* JNOV
**JPAR
**JNPAR
* JPH
* JNPH

 Jump if Equal
 Jump if Not Equal
 Jump if Zero flag set (= JE)
 Jump if No Zero flag (= JNE)
 Jump if Less Than
 Jump if Minus (= JLT)
 Jump if Greater Than
 Jump if Less or Equal
 Jump if Greater or Equal
 Jump if Positive or Zero (=JGE)
 Jump if ODd (var=...1)
 Jump if Even (var=...0)
 Jump if True (= JOD)
 Jump if False (= JEV)
 Jump if Overflow
 Jump if No Overflow
 Jump if PARameter
 Jump if No PARameter
 Jump if PHantom Param.
 Jump if No PHantom Param.

 ZF = 1
 ZF = 0
 ZF = 1
 ZF = 0
 SF = 1
 SF = 1
 /SF & /ZF = 1
 SF v ZF = 1
 /SF v ZF = 1
 /SF v ZF = 1
 ODF = 1
 ODF = 0
 ODF = 1
 ODF = 0
 OVF = 1
 OVF = 0
 NPAR = 0
 NPAR = 1
 PHP = 1
 PHP = 0

Conditional Execution
a) IF(condition) instruction

b) IF(condition) var, instruction

Action:
If "condition" is true, "Instruction" is executed, otherwise, "Instruction" is skipped. The syntax a)
samples the arithmetic flags, the syntax b) acts on the status of var. The instruction which follows the
condition cannot be an IF.
All the conditions of table 6.4. can be used, simply replace "J" by "IF".
Example: IFT bvar, RET ; Return if <bvar> is true.
If "instruction" is a procedure call, the mnemonic "CALL" must be used (see section 6.5).

Conditional Wait:
W(condition) var
Action:
The program does nothing as long as "condition" is true.
The Wait instruction can be considered as a short-hand notation for

Label: J(condition) var, Label.
Wait works with all conditions of table 6.4., replace "J" by "W", except for JGT, JLE, JOV, JNOV,
JPAR, JNPAR, JPH and JNPH.

Simultaneous Program Activation:
ASIM i, label
Activate Simultaneous program nb i starting at label or <var>.

or ASIM i, var
Action:
The CPU nb i (Figure 1.) starts or restarts execution at "label" or at <var>. Level 0 is set in the register
stack. Thus, ASIM i (or PNB) written in the program nb i can be used to escape from any level of
procedure nesting and to branch anywhere in program i at level 0.

E-300 2

The concept of "simultaneous programs" is made self-explanatory by the figure 1. Simultaneous
programs allow the programmer to effect several tasks at the same time without having to worry
about the exact time relationship between the events occurring in the various tasks. They are also
very useful to detect randomly occurring events, such as the depression of a STOP button. In effect,
the concept of simultaneous programs is a very practical replacement for the interrupt system found
in conventional processors. The E-300 controller is a true time-sharing system.
Operational Properties of Simultaneous Programs:
- A program can call a simultaneous program by issuing the instruction "ASIM i label".
- A program can momentary deactivate and reactivate a simultaneous program by resetting or setting
the corresponding SAF(i) bit. A program can deactivate itself.
- A program can test the activity status of another program by testing the corresponding SAF(i) bit.
- A procedure can be indexed on the program number using the special variable PNB as an index.
- Number 0 is the default simultaneous program. At power-up, "ASIM 0,..." is executed.

It is not allowed to stop a simultaneous program by RES SAF while it is executing a number
input instruction (see section 6.7.).
Suspension of the simultaneous program execution:
PSIM
no argument
Action:
All the simultaneous programs are paused with the exception of the program containing the PSIM
instruction.

Reactivation of paused simultaneous programs:
RSIM no argument
Action:
All the simultaneous programs paused by the instruction PSIM are reactivated. The execution of each
simultaneous program resumes where it was interrupted.

6.5. Procedure Call

The E-300 language recognizes any defined label as the instruction mnemonics for a procedure call.
The E-300 interpreter makes no difference between a procedure call and subroutine call. Thus, the
term "procedure " is used in lieu et place of the term "subroutine". The mnemonics CALL is also
recognized by the assembler.
Syntax:
(CALL) PROCNAME PAR0, PAR1, PAR2,.....
The parameters PARi are optional and their number is limited to 256.
Action: - Stack level = Stack level + 1

- The program counter of the calling level points to PAR0,
- The value of PROCNAME is put into the program counter of "Level + 1"
- The registers RA to RF of the calling level are copied into the registers of "Level + 1", but
the flags are not copied.

This syntax is the basis for the generation of new instructions. Any procedure can be regarded as a
new instruction and a set of well designed and documented procedures can be an application specific
language.
The parameters become the arguments of the just created instruction. Within the procedure, an
instruction referencing the first parameter uses the dummy argument %(0) as an argument; to refe-
rence the parameter nb i in the procedure call, %(i) must be used. The use of parametric calls and
dummy arguments is shown in chapter 7.
A procedure call can have 256 parameters appended. Within the procedure, references to the
parameters must be made by the dummy parameter array %(0) to %(255).
A procedure call within an "IF" statement must be written with the mnemonic "CALL".
The "No PARameter Flag, NPAR:
A procedure call can be made very flexible if the number of parameters can be left undefined. In order

E-300 2

to instruct the procedure that the parameters have been exhausted, the NPAR flag come to use. If the
procedure call has parameters with ranking numbers from 0 to n, any reference to one of these
parameters will left the NPAR flag cleared; reference to the parameter n+1 will set NPAR.
The Phantom Parameter:
It is sometimes useful to call a procedure (or instruction) while leaving one or several parameters
unchanged, i.e. keeping for these parameters the value they were given before the procedure call. To
effect this, the phantom parameter "*" is put in the call instead of a real parameter. Any instruction
referencing the phantom parameter is a No-Operation except for the setting of the flags. If the
phantom parameter is used as destination argument, the PHP flag is set and some other flags are
affected, according to the instruction. The phantom parameter as a source argument has no practical
meaning.
Example: IADD *, RA, RB ; The arithmetic flags are affected, the result is lost.

Return from a Procedure:
RET
Action:
RET decrements the level pointer and transfers the program control to the instruction just following
the CALL instruction.

Return from a Procedure with Jump:
RETJ label
RETJ var

Action:
RETJ decrements the Level pointer, transferring the program control to the calling level at "label" or at
<var>.
An indirect RETJ must be followed by an op-code, eventually a NOP must be inserted, see the note in
section 6.4.

E-300 2

6.6. Motion Generator Instructions
Initialize Motion Generator:
IMG axis, displacement
Action:
IMG initializes a motion generator for a motion. IMG sets the DIR(Axis) flag according to the sign of
"displacement". This instruction does not start the motion. "axis" must be an ordinal and
"displacement" must be an integer with a range of up to 4 bytes. See the contents of chapter 7 for
more information about IMG.
Designate a Travel Limit Input:
The E-300 controller has 2 inputs per axis which can be designated as travel limit inputs INA(x) and
INB(x). If one of these inputs is designated as a travel limit by setting the INAE(x) or INBE(x) flag
(Enable), the motion of the designated axis will stop immediately when an over-travel occurs. If the
enable flags INAE or INBE are reset to 0, the inputs can be used as general purpose inputs.
A motion on the axis is abruptly stopped when the "INA(x) or INB(x)" input is activated. (The RUN flag
is reset to zero, see chapter 7). The INAI(x) and INBI(x) flags (Invert) are used to choose a normally
closed or normally open switch. They must be set to 1 for a normally open switch and to 0 for a
normally closed switch.
The LSA(x) flag is set to one if the motion has been stopped by this mechanism. The relevant LSA
flags must be reset by the programmer in the initialization sequence and after the detection of an
over-travel.
Example:

.

.
RES LSA(1)
RES INAI(1) ; Axis 1 normally closed
SET INAE(1)
IMG 1, 100000
WF ZSF(1)
SET RUN(1) ; Start the motion toward home switch
WT RUN(1) ; Wait end of motion
RES LSA(1) ; Switch encountered
MOV SPLD(1), 1
IMG 1, -10000
WF ZSF(1)
SET RUN(1)
WT RUN(1)
RES INAE(1); Deactivate the detection
RES PABS(1), LSA(1) ; Reference made
.
.

E-300 2

6.7. Keyboard and Display Instructions

6.7.1. Keyboard Instructions

The E-300 motion controller has circuitry to read a matrix of max. 4 * 8 push-buttons (hereafter
"keys") and to drive 8 LEDs.
The keys matrix is encoded as ASCII characters through a coding table provided by the programmer.
The address of the coding table must be loaded into the variable KXCOD. The table has 32 bytes
(complete key matrix), the cross points not implemented can be filled-in with any character, such as
Space.
Coding Table used in the E-300 Controller:

KEYT: DO1F F10, F9, F8, F7, F6, F5, SWR, F2,
'7', '4', '1', '-', INS, ESC, SWG, F1,
'8', '5', '2', '0', CLR, RTA, UPA, F4,
'9', '6', '3', '.', ENT, DNA, LFA, F3,

CLR = 08H
ENT = 0DH ; ENTer
UPA = 80H ; UP Arrow
DNA = 81H ; DowN Arrow
F1 = 82H
F2 = 83H
F3 = 84H
F4 = 85H
F5 = 86H
F6 = 87H
F7 = 88H
F8 = 89H
F9 = 8AH
F10 = 8BH
LFA = 8CH ; LeFt Arrow
RTA = 8DH ; RighT Arrow
INST = 8EH ; INSerT (INS)
SWR = 90H ; SWitch Red (STOP button)
SWG = 91H ; SWitch Green (START button)
ESC = 0C0H ; ESCape

The key designators refer to Figure 6.7.1. and they must be defined as ASCII characters by
equivalence statements:

E-300 2

Figure 6.7.1: E-300, Key Designations (j) = LED offset assignement
 [$i] = KEY offset assignement

The above coding table is the default one for the E-300.
To activate another coding table, the instruction MOV KXCOD, #KEYT must be executed prior to
any keyboard instruction.
The code of the last depressed key is to be found in the variable KCOD(0)
The function of the keyboard input instructions strongly depends upon the Key Available Flag, KAF.
KAF is set by a key depression. KINP instructions may operate in different simultaneous programs at
the same time. Therefore, each simultaneous program has its own KAF.
An input instruction waits for KAF = 1 (the KAF belonging to its simultaneous program) and resets it
after writing the input value to the destination. If KAF was set at instruction entry, the input instruction
immediatly picks the character from KCOD(0) and resets KAF.
Note: The simultaneous programs cannot access the keyboard or the display at the same time.
Character Input Instruction:
KINP dest
Action:
The program waits for KAF = 1, then copies the code of the depressed key from KCOD(0) to "dest"
and resets KAF (Key Available Flag).

 F10 (0)
 [$0] 7 8 9
 [$8] [$10] [$18]
 F9 (1)
 [$1] 4 5 6
 [$9] [$11] [$19]
 F1 F2 F3 F4 F8 (2)
 [$F] [$7] [$1F] [$17] [$2] 1 2 3
 [$A] [$12] [$1A]
 F7 (3)
 [$3] - 0 .
 UPA [$B] [$13] [$1B]
 START (6) [$16] F6 (4)
 [$E] LFA RTA [$4] INS CLR ENT
 [$1E] [$15] [$C] [$14] [$1C]
 STOP (7) DNA F5 (5)
 [$6] [$1D] [$5] ESC
 [$D]

E-300 2

Integer input:
IINP dest (,n)
Action:
If successful, the number typed at the keyboard is stored into dest. The optional argument "n" sets the
maximum number of figures to be entered. The key depressions are echoed to the display. When the
nth figure is typed, a carriage return character is sent automatically to the display and terminates the
instruction. The number is stored into dest. When not specified, the maximum number of figures is 38.
The following ASCII characters are accepted:
'0' to '9' , '+' , '-' , $08 (CLR) , $0D (ENT)
The following characters are ignored:
$0 to $7F .
The following characters terminate the instruction, the content of dest is not modified:
$80 to $FF , $08 (BS) if this character has been typed as first character or if all the figures entered
before have been deleted by $08, $0D if typed as first character.
Floating input:
FINP dest(,n)
Action: Similar to IINP, but the instruction accepts the decimal point and the scientific notation.

Example:
3.456E3

n is optional. See IINP instruction.
The following characters are accepted:
'0' to '9' , '.' , '-' , '+' , 'E' , $08, $0D
The following characters are ignored:
$0 to $7F.
The following characters terminate the instruction, the content of dest is not modified:
$80 to $FF , $08 (see IINP) , $0D if typed as first character.
Note: The character "E" is not part of the standard E-300 coding table; an modified coding table may
be devised to incorporate ASCII "E".

String input:
STINP dest
STINP accepts all characters. If the entered chain is longer than the length of the destination variable,
truncation occurs; if the chain is shorter, a null ($0) character is appended to the chain. Maximum
number of characters is 38 before automatic carriage return.
The following characters terminate the instruction, the destination will contain the characters $0:
$08 (see IINP) , $0D if typed as first character.
After an input instruction, the variable KCOD(0) contains one of the following codes:
$08 if the instruction has been terminated by $08,
$0A if only a carriage return has been typed,
$80 to $FF if the instruction has been terminated by a character from $80 to $FF,
$0D if the item has been successfully entered and stored into destination by typing carriage return or
by automatic carriage return. This instruction is of very limited utility with the E-300 keyboard.
During execution of IINP, FINP, STINP, the character $08 (backspace) allows correction of the typed
characters. The characters are echoed on the display. The carriage return character $0D is required
to store the inputted items into the destination and to terminate the instruction.

6.7.2. The Keys as Boolean Variables

The keyboard can also be read as an array of boolean variables KEY(i), where i belongs to (0..63).
KEY is a dedicated name of the assembler and the offset i is the rank of the cross point in the coding
matrix. For example, the key "F5" reads as KEY($5), "8" as KEY($10). Reading a key as a boolean
element allows the programmer to sense the duration of the depression, a possibility not available
with the instruction KINP.

E-300 2

6.7.3. The Keyboard LEDs

The LEDs illuminating several keys of the keyboard are controlled by the boolean array LED(j), where
j belongs to (0..7). The assignment for the E-300 keyboard is given in Figure 6.7.1. and in Table
6.7.3bis.

To get a blinking LED, add 8 to the offset of the LED-variable. The blink status overrides the on status
according to the table 6.7.3.

Table 6.7.3. LED Status:

LED Status LED(j) LED(j+8)

 off
 blinking
 on
 blinking

 0
 0
 1
 1

 0
 1
 0
 1

Table 6.7.3bis.: E-300 Led Assignement

KEY Boolean LED

 F10
 F9
 F8
 F7
 F6
 F5
 START
 STOP

 LED(0)
 LED(1)
 LED(2)
 LED(3)
 LED(4)
 LED(5)
 LED(6)
 LED(7)

Example:
SET LED(4) ; LED of key F6 on
SET LED(4+8) ; LED F6 is blinking
RES LED(4+8) ; LED F6 on
RES LED(4) ; LED F6 off

6.7.4. Display Instructions

The LC Display has 2 rows of 20 characters which are made of a 7 x 5 dots matrix :

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Figure 6.7.4.: Character Positions of the Display.

The programmer writes the message to be displayed into one of two RAM areas, here termed
"Windows". The display is refreshed automatically from the active window. The display status is
controlled by "printing" special characters, see table 6.7.4.
The Figure 6.7.4bis illustrates the way the windows and the display operate. The switch at left
designates the destination of the display instructions; the switch at right selects the data to be

E-300 2

effectively displayed.

E-300 2

Figure 6.7.4bis: The Window Selection, Instruction writes to window 0, display from window 1.

Note: In this section, "print" means "write to the display".
Integer print:
IPR src
Action:
The contents of PMI direct the printing. The PMI belonging to the current simultaneous program must
be used; it is good practice to index PMI with the simultaneous program number, i.e. using PMI(PNB).

 <PMI>= 0 left justification of the number, any number of digit.

 <PMI> n > 0 n digit saturation, right justified. The sign is not included in the digit number and is
printed at the cursor position.

 <PMI> n < 0 for positive numbers only. n digit saturation, right justified, the free characters before
the number are zeros "0". No sign.

Examples:
<PMI> = 0

- 1
- 1 0
1 0 0
1 2 3 4

 ^ cursor position

<PMI> = 4
- 1
- 1 0

1 0 0 0
9 9 9 9

 ^ cursor position

Saturation ! number >= 9999

Display Window 0

Display Window 1

KPR DW0

KPR DW1

KPR SW0

KPR SW1

Effective
Display

Display
Instruction

E-300 2

<PMI> = -4
0 0 0 1
0 0 1 0

 ^ cursor position

Floating print:
FPR src
Action:
The contents of PMF0 and PMF1 govern the printing. As exposed with PMI, the status variables
PMF0 and PMF1 are usually indexed with PNB: PMF0(PNB), PMF1(PNB).
<PMF0> = 0 and <PMF1> = 0 : scientific notation with 7 significant digits.

<PMF0> = 0 and <PMF1> = n > 0 : notation with n digits with floating decimal point, too short
numbers are followed by zeros "0".

<PMF0> = n and <PMF1> = m : n digits at the left of the decimal point and m digits
after the decimal point.

The sign is written just before the number field. It is not included in the digit count.
Examples:
The number to be printed is 9.2E18 (max range)

<PMF0> = 0 and <PMF1> = 0 : 9.2E18

<PMF0> = 2 and <PMF1> = 3 : 99.999 saturation!

The number to be printed is 12,345 :
<PMF0> = 0 and <PMF1> = 6 : 12.3450

^ cursor position

Character print:
KPR src1,src2,..,srcn
Action:
All characters from srci are written to the selected display window, src1 first. Table 6.7.4 shows
character codes for the LCD.

String Print Instruction:
STPR src
Action: src is written to the selected display window; src is either an immediate string or a string
variable.
The string may be made of text and control characters.
The character 0 (hexa) marks the end of a string prior its length, Thus, we cannot have a 0 in a string:

STPR <DP, 0, 'abcdef"> is not allowed

Table 6.7.4.: Control Characters (to be used in KPR and STPR instructions):
SW0 = $0 Select Window 0 to write (Default value)
SW1 = $1 Select Window 1 to write
DW0 = $4 Select Window 0 to dislay (default value)
DW1 = $5 Select Window 1 to display
DP,n = $10,n Display Position at n. The cursor is set at character position n.

n = 0..39
CURSON = $13 Cursor ON
CURSOFF = $14 Cursor OFF
CLN, n = $1C Clear n characters from cursor position
CLEOL = $1D Clear End of Line. The characters from cursor to the end of the

E-300 2

line are deleted, the cursor doesn't move.
CLEOS = $1E Clear End Of Screen. The characters from cursor to the end of

the screen are deleted, the cursor doesn't move.
CLS = $1F Clear Screen. The screen is entirely cleared, the cursor position

is set to 0 (upper left corner), the cursor is on. At power on, the
screen is clear.

The symbols of table 6.7.4 are given for convenience only; they are not recognized by the assembler.
It is a good practice to include their definitions into a keypad and LED definition file. This file is then
included in all E-300 programs.

E-300 2

Table 6.7.4bis. Display Characters

0 1 2 3 4 5 6 7 D E F

0 SW0 DP SP 0 @ P ` p α

1 SW1 ! 1 A Q a q

2 " 2 B R b r β υ

3 CURSON # 3 C S c s ε :

4 DW0 CURSOFF $ 4 D T d t µ ς

5 DW1 % 5 E U e u σ ü

6 & 6 F V f v ρ Σ

7 ' 7 G W g w π

8 BS (8 H X h x √

9) 9 I Y i y

A LF * : J Z j z

B + ; K [k {

C CLN , < L � l | Φ

D CR CLEOL - = M] m } 4

E CLEOS . > N ^ n → ñ

F CLS / ? O _ o ← ° ö

To read the table: The rows are the lower hexadecimal digit, the columns are the upper hexadecimal
digit of the ASCII character, for example "A" = 41 hex

6.8. Input, Output, I/O Bus, AD and DA Converter Instructions, Temperature Sensor
The E-300 controller has 4 inputs available at the motor connectors: INA(0), INB(0), INA(1), INB(1).
These inputs are dedicated travel limit inputs, section 6.6. If not used as limit switches, they are
general purpose inputs. In addition the E-300 has 8 inputs IN(0) to IN(7) and the EIP I/O bus. The I/O
extension bus of the E-300 controller can address 120 inputs implemented in remote modules. The
dedicated symbols for these inputs are IN(8) to IN(127).
The I/O extension bus addresses also 120 general purpose outputs: OUT(8) to OUT(127). The E-300
controller has 8 outputs available at the I/O connector: OUT(0) to OUT(7); in other words, the
compact E-300 has an Output Module built-in.
INA(x), INB(x), IN(x) and OUT(x) are boolean elements and as such can be used as argument in all
relevant instructions: MOV, SET, RES, JT, JF, WT, WF.
Analog-to-Digital Converter
An 8 bit analog-to-digital converter is implemented. It is tied to the cursor of the potentiometer
mounted on the operator's panel or to the Analog I/O connector (selectable). The conversion range is
0 to 5V or 0 to 10V (configurable), or, in numeric format, 0 to 255. The system variable ADC reflects
the analog input value.
As default mode, the ADC selects the potentiometer input and the conversion result is used, as
explained in section 7.1.3, to control the axis velocity.
Digital-to-Analog-Converter:
Writing a single byte ordinal to the system variable DAC loads the converter. DAC is a VO1S variable.
The output, available at the Analog I/O connector has a range of 0 to 10 V.
Temperature Sensor:
The E-300 is equipped with a temperature sensor which is located on the mother board. The state of
this sensor is readable via the INIT boolean variable. INIT comes to 1 if the temperature goes over

E-300 2

68°C. The NTC flag sets the "manual" or "automatic" temperature watching mode:
NTC=0:The programmer must watch INIT to do the appropriate sequence when it comes to 1.

NTC=1:When the temperature comes over 68°C, the simultaneous programmes are stopped, the
motors are stopped and the message "Internal temperature over 68 degrees" is
displayed. The E-300 controller must be switched off to restart the programme.

6.9. FLASH Memory Programming

The FLASH can be read as RAM but writing needs a special procedure through the instruction:
PROG dest, src, element_nb
Action: As an XFER instruction, but the execution time is about 3 ms. It is advisable to compare
source and destination after a "PROG" to detect FLASH failures.
Example:

ORG $E000
EEFLASH_VAR: DFF ?

.

.
PROG FLASH_VAR, RA, 1
FCMP FLASH_VAR, RA
JNE ERROR
.
.

E-300 46b

6.10. ASCII Serial Reception

Line buffer:

To simplify "ASCII row" acquisition, a line buffer is introduced. This buffer has the following specifications:

 - The buffer supports one line, composed of elements of different "types". An element pointer is
used and each element holds a position number, the first is zero.

 - The elements are separated by a comma, or one or several "space" ($20) or "tab" ($09). These
are called separators. They are stored in the buffer but ignored while reading the elements.

 - The end of the line is given by the $0D character.

 - The first character in the buffer is the line length (the $0D is counted).

 - The character $0A (line feed) is ignored at buffer entry, the same holds for all characters sent
after a semi-colon ";" (comment).

 - The legal characters are from $00 to $DF. $E0 to $FF are system reserved characters

A byte, LNF, is associated with the line buffer. LNF is different from zero when the buffer has recieved a
valid line.

Initialization of the Line Buffer:

CLINP

No argument.

Action: - The internal input buffer is cleared,

- LNF is set to one.

This instruction is usually used once at the program start.

Buffer preparation:

LINP

No argument.

Action: - LNF byte is set to zero,
- the element pointer is set to zero,
- the line length is set to zero.

"LINP" doesn't wait for data input. A stored line is available when the LNF byte becomes one.

Reading a String Type Element:

 STXINP dest (,src)

E-300 46b

Action:

This instruction reads the element pointed to by the element pointer and puts it into "dest". The pointer is
incremented. The element can be directly addressed by its position number, if it is specified in "src", see
the example.

Reading an Integer Type Element:

IXINP dest (,src)

Action: as STXINP.

Reading a Floating Type Element:

FXINP dest (,src)

Action: as STXINP.

If the "type" of the element does not correspond with the instruction, the conversion is automatically made.
If the element pointer is larger than the element number, the OVF flag is set. If the element is an empty
element or doesn't exist, the instruction becomes a No-Operation instruction (NOP) and the OVF flag is
set.

Line Acquisition Example:

Line send to the module over the serial link:

n POS tab X 100.00 , Y - 1.23 , ,, ; comment ($0D)

The line buffer contains:

n POS tab X 100.00 , Y - 1.23 , , , ($0D)

 0 1 2 3 4 5 6 7 <- element pointer

line length = 40

Program example:

E-300 46b

START: CLINP
 .
 .
 .
 LINP
 WF LNF ; Wait for line complete
 STXINP INST ; $0D received, read string
 STXINP AXE ; AXE = "X"
 FXINP VALUE1 ; VALUE1 = 100.0 (floating)
 STXINP AXE(1) ; AXE(1) = "Y"
 IXINP VALUE2 ; VALUE2 = 1 (integer)
 IXINP RA, 2 ; RA unchanged
 FXINP RB, 5 ; RB unchanged
 FXINP RC, 6 ; RC unchanged
 FXINP RD, 7 ; RD unchanged
 FXINP RE, 8 ; RE unchanged , OVF = 1
 .
 .
 LINP
 WF

6.11. Serial ASCII Transmission

Integer "Print":

IXPR src

"src" is the source to be "printed"; it must be an ordinal, an immediate integer, or a numerical variable
holding an integer.

Action:

The contents of "src" is outputed on the serial link as a decimal number. The output format is governed
by the contents of the Print Mode variable PMI(8). See section 6.7.4.

Floating Number "Print":

FXPR src

Action:

As IXPR, but "src" must be a floating number and PMF0(8) and PMF1(8) govern the output format.

String "Print":

 STXPR string
 STXPR var

E-300 46b

An immediate string or the contents of a variable of the string type is outputed on the serial link. The
printing terminates if a Null character is encountered in the string.

Single Characters "Print":

KXPR src1, src2, src3, ..., srcn

One or several ASCII characters are sent on the serial link.

Example: KXPR $0D, $0A

 or KXPR $0D

KXPR $0A

 or STXPR <$0D, $0A>

E-300 46b

7. THE E-300 MOTION GENERATORS

The E-300 has 2 physical motion generators to allow up to 2 simultaneous point-to-point motions. A
3rd "soft" motion generator is intended to control the motion along the path when a set of axes is
involved in an interpolation. Path control will be presented in section 7.3. The motion generators
associated with physical axes are named "axis 0" and "axis 1" and the path is axis 2.
The 2 axes are intended to control step-motor translators.
The motion generator computes the velocity profile and outputs a pulse frequency proportional to the
current velocity.

7.1. Variables Pertaining to Motion Generation

Important Notice: The parameters and variables introduced in this chapter are declared for the
axes 0 and 1; most of them also exist for the path axis. For clarity we shall
write, for example, "DIV" as a generic name instead of DIV(i).

7.1.1. PABS, Absolute Position Register

A proprietary circuit generates the step frequency. It works in close relationship with a processor
interrupt routine, which loads the generator with the current velocity. As this loading occurs at regular
time intervals, the value of the velocity may be seen as an elementary length segment. The
elementary length segments are accumulated in a register, the Absolute Position Register, PABS.
PABS continuously keeps track of the actual position of the axis. Each axis, of course, has its own
PABS. The contents of PABS is a 4-byte integer, thus no rounding inaccuracies can corrupt the
relationship between the motor position and the contents of PABS.

Figure 7.1.1. E-300 Motion Generator

MOTION
GENERATOR

FREQUENCY
DIVIDER

PABS

DRIVE MOTOR
IS ES

E-300 46b

7.1.2. DIV, Frequency Divider
PABS contains the coordinate expressed in Internal Steps, IS in Figure 7.1.1. In order to adapt the
step frequency to various drive/motor combinations, a frequency divider is provided. After the division,
the length unit is the External Step, ES. Thus, the value of parameter NDIV is defined as:

<DIV> = number of IS for 1 ES (1)

The parameter NDIV sets the maximal obtainable external pulse frequency, fEmax, according to (1),
fEmax in kHz:

fEmax = 11910/<NDIV> [kHz]

The width of the output pulse (for a step motor driver) is 0.021 * <NDIV> [µs].

7.1.3. The Steady State Velocity, SPLD, SPLI

During any motion, the plot of the velocity -or pulse frequency- versus time looks like the figure
7.1.3. The pulse frequency is proportional to the axis velocity for a positioning move; for a continuous
path, the tangential velocity is significant.
Starting from the rest, the velocity grows, following an inverse exponential law; then it eventually
reaches its programmed steady state value and finally decreases to zero with a similar law. The
maximum pulse frequency, fEmax, is the asymptote of the acceleration and deceleration curves.
The inverse exponential acceleration law is the best choice to move an inertial load with a motor
exhibiting a falling torque versus frequency characteristics, an assumption which holds roughly for
most stepper motor/driver combinations.

Figure 7.1.3. Velocity Profile

The steady state velocity is governed by two variables: SPLD (SPeed Limit Direct) and SPLI (SPeed
Limit Indirect). SPLD has the range 0..32639 and SPLI points to a single byte ordinal number or
variable. The steady state frequency is given by (2).

TIME

VELOCITY or fE
MAXIMUM VELOCITY or fEmax

STEADY STATE VELOCITY

E-300 46b

Steady State Frequency = 12'000 * [<SPLD> * <<SPLI>>/2**23]/<NDIV> [kHz] (2)
 = 1.43 * <SPLD> * <<SPLI>>/<NDIV> [Hz]

The steady state velocity may be changed at any instant, i.e. also during a motion. Any alteration of
the velocity during a motion, either through SPLD or through SPLI is done according to the
acceleration or deceleration laws. Thus, full range velocity steps are permitted.
The "feed overdrive" potentiometer, which allows the velocity to be set from 0 to 100% of the
programmed speed is a typical example of the usage of the indirect speed control. The cursor of the
potentiometer is fed to the analogue input and the variable SPLI points to the Analog-to-Digital
Converter register.
The variable SPLI contains the address of a single byte variable located anywhere in the memory
space. The contents of the addressed byte, regarded as a positive integer in the range 0..255,
modifies the steady state velocity as per equation (2).
Special Values of SPLI:
 - <SPLI> = #VMAXADVMAXAD holds 255, the steady state velocity has its programmed value.
 - <SPLI> = #VMINAD VMINAD holds 0, the motion stops with ramp.
 - <SPLI> = #ADC the effective velocity is controlled by the potentiometer (through the

analogue-to-digital converter).

In addition to the variables governing the steady state velocity, the instantaneous velocity is
available to the programmer through VACTN. VACTN is a read-only variable, writing to VACTN can
disturb the generation of the motion.

7.1.4. Acceleration and Deceleration, KUP and KDN

The initial slope in figure 7.1.3., i.e. the initial acceleration, is directly related to the contents of the
variable KUP. The same holds for the final slope, which is proportional to KDN.
These two variables set the initial and final slopes according to (3).

d(fE)/dt = 67.055/<NDIV> * <KUP> [kHz/s] (acceleration) (3)
d(fE)/dt = - 67.055/<NDIV> * <KDN> [kHz/s] (deceleration)

7.1.5. Axis Status Flags: RUN, ZSF, NBOOST, BSTE, BSTI, FAULT, LSA

RUN has the value 1 during a motion, it resets at completion of the move. RUN(0) and RUN(1) refer
to the individual axes, RUN(2) is the run flag of the path axis.
ZSF continuously monitors the zero status of the VACTN. This boolean variable is available for each
individual axis and for the path axis. It is used whenever a motion is stopped by setting one of the
variables SPLD or <SPLI> to zero. ZSF allows the program to wait for the end of the down ramp, see
example below.
BST is an output associated with the physical axes 0 and 1. It is intended to alter the motor current.
Its action within the motor driver may be an effective boost or a reduction of the current, depending
upon the driver circuitry. The action of the BST outputs is conditioned by the status of BSTE, Boost
Enable, and BSTI, Boost Invert.
If BSTE is set, the BST output is automatically asserted during a move of its axis. If BSTE is zero,
BST can be used as a regular output. The voltage level of the asserted BST output at the driver
connector can be inverted by setting BSTI true. BSTI is active only when BSTE is true.
Table 7.1.5: BST Logic

BSTE BSTI RUN BST

0 X X Regular Output

1 0 0 0

E-300 46b

1 0 1 1

1 1 0 1

1 1 1 0

The FAULT flag can be read by the programmer to know if the translator or the servo-amplifier is
working properly. There is no automatic sampling of the FAULT input.
INAI, INAE, INBI, INBE. The function of these flags has been presented with the instruction IMG in
section 6.6.

7.1.6. Example of Motion Programs

a) Simple motion of axis 0, displacement in engineering units in PHMOV. In this example, the
variables NDIV, SPLD and SPLI are supposed to be already properly loaded.

E-300 46b

X = 0 ; axis name
SCALEX = 160.34 ; scale factor, float. number

; external steps/length unit

PHMOV: DFR 4 DUP ? ; variable definition

; first compute the internal scale factor as part of the initialization
CFLO RA, NDIV(X) ; NDIV is an ordinal
FMUL KMUL(X), RA, SCALEX ; KMUL is a dedicated variable
...............

FMUL RA, PHMOV(X), KMUL(X) ; displacement in IS units
CINR RA ; displacement as integer
IMG X, RA ; motion prepared
WF ZSF(X) ; wait for completion of a preceding

; move
SET RUN(X) ; start
WT RUN(X) ; wait for end of move
..........

b) Jogging Motion in Positive Direction, control by key JOGK, Panel Potentiometer active.

JOGK = KEY(21) ; refer to 6.7.2.

JF JOGK, CONTINUE ; if key already released
MOV SPLD(X), 10000
MOV SPLI(X), #ADC ; SPLI points to ADC
FMUL RC, STROKEX, KMUL(X) ; see example a), STROKEX is

; max. travel for axis
CINR RC
IMG X, RC
WF ZSF(X) ; wait for completion of a preceding move
SET RUN(X)
WT JOGK ; wait until key released
RES SPLD(X) ; clear velocity
WF ZSF(X) ; wait end of down ramp

CONTINUE:
.......

Note: Whenever an axis has to execute two moves in rapid sequence, it is strongly recommended to
test the ZSF flag before setting the RUN flag for a new move.

7.2. Software Travel Limits

The E-300 motion generator has an over travel detection system based upon the contents of the
absolute position register PABS. However, the software travel limit system makes sense only if the
axis has been referenced by a homing procedure.
The travel limit in positive direction is loaded into XLPOS, the limit in negative direction into XLNEG.
The contents of XLPOS and XLNEG is a signed integer and it measures the travel in internal steps
(IS). The software travel limit system is activated by setting the flag PLWF. Whenever an axis is in
over-travel, the flag PLAF is set and the number of the faulty axis is to be found in the variable PLAX.
The travel limit system is effective on all 4 axes (provided PLWF is set) as long as the velocity is non-
zero (ZSF = 0). If XLPOS and XLNEG hold the default values of 231 - 1, resp. -231 the corresponding
axis is not protected.

E-300 46b

XLPOS, XLNEG are defined for all physical axes, PLWF, PLAF and PLAX are common to all axes.
To sum up, the programmer has to effect the following steps in order to use the software travel limit
system:

- Load XLPOS and XLNEG with the limit positions for the axis.
- Set PLWF true, the system is now activated.
- Test PLAF, for example, in a dedicated simultaneous program.
- When an over travel is detected, read PLAX to identify the faulty axis.

7.3. The E-300 Interpolator

The E-300 interpolator is basically a generator of vectors. The generation of curved paths must be
done by a straight segment approximation. The individual segments are computed by an
E-300 program and the components of the vectors are passed to the interpolator.
The E-300 interpolator has the following properties:
- it works in an n-dimensional space, with n = 1..15,
- it generates vectors of any paraxial length, up to 223 IS steps,
- it automatically chains straight segments to form a continuous
 path,
- it controls the speed along the path.

7.3.1. Principle of Vector Generation

The principles given hereafter apply strictly for two axes in a rectangular coordinate system.
The vector δx, δy has to be generated, δx and δy are given in engineering units. E-300 first computes
the displacements in IS units:

∆X = δx * <KMUL(X)>
∆Y = δy * <KMUL(Y)>,

where KMUL is a dedicated variable loaded by the program:

<KMUL> is the number of internal pulses required to generate a motion of 1 unit
or
<KMUL> is (number of external pulses required to generate a motion of 1 unit) * <NDIV>

To control the velocity along the vector, the system has to know the modulus of the vector in IS units:
δs = (δx2 + δy2)1/2

∆S = δs * <KMUL(S)> KMUL(S) = KMUL(4)
During the vector generation, the velocities of the X- and Y-axes are proportional to the vector
components, more precisely proportional to the value of Px and Py:
 Px/224 = │∆X/∆S│ = [δx * <KMUL(X)>] / [δs * <KMUL(S)>]

Py/224 = │∆Y/∆S│ = [δy * <KMUL(Y)>] / [δs * <KMUL(S)>]

Px and Py are stored as 4 byte integers, δx/δs and δy/δs can have the value 1 (for an horizontal or a
vertical vector respectively). Therefore, KMUL(S) must verify the two conditions:

<KMUL(S)> > <KMUL(X)> and <KMUL(S)> > <KMUL(Y)>.
This will allow the generation of vectors of any slope in the X-Y space. To take rounding inaccuracies
in account, set KMUL(S) = largest KMUL(axis) * 1.005

7.3.2. The Interpolation Buffer

A continuous path is made of a sequence of straight segments. The instructions of the next section
compute the values of ∆X, ∆Y,... ∆S, Px, Py, ... for all segments and store these results into the
Interpolation Buffer. The computation are made prior to the move in order to obviate computing
speed limitations.
Table 7.4.2. The Interpolation Buffer

E-300 46b

Axis enables 2 bytes HEADER

Number of segments 2 bytes Stored by instruction OPENC,

Segment size 1 byte Up-dated by SEGMC

Path length 4 bytes

∆S0 3 bytes STORAGE FOR SEGMENT #0

∆X0 3 bytes Example of segment storage

Px0 3 bytes For 3 axes computed by SEGMC from

∆Y0 3 bytes Vector data.

Py0 3 bytes

∆U0 3 bytes

Pu0 3 bytes

∆S1 3 bytes STORAGE FOR SEGMENT #1

∆X1 3 bytes

Px1 3 bytes

………. ……….

E-300 46b

Interpolation Buffer Entries:
Axis enables: The axes involved in the interpolation are marked with a "1" in the bit

position. Example: Two-dimensional space (1 & 3) or (Y & U)
1 0 1 0

Number of segments: Total number of segments in the buffer.

Segment size: The number of bytes required to store one segment: 15 for 2 axes, 21 for 3
axes, 27 for 3 axes or for n axes:

Number of segments = 3+n*6
Path length: This field is cleared by OPENC and up-dated by SEGMC. When a segment

is stored, its ∆S is added to the Path Length. The total path length is used to
generate the velocity profile along the path.

The interpolation buffer is located in the RAM storage space.

7.3.3. Interpolation Instructions

Initialize the Interpolation Buffer:
OPENC buf_addr, axis, axis, ...
Arguments: buf_addr is an immediate ordinal or an ordinal variable pointing to the physical

address of the buffer. This address may be obtained, for example, by the #-prefix or
by the ADDR instruction.

axis is the axis number (an ordinal or an ordinal variable which hold an ordinal
between 0 and 14. Up to 15 "axis" are accepted. The number of arguments gives the
size of the buffer. If "axis" evaluates to 15, the argument is discarded; this may prove
useful in writing procedures for different spaces.

Segment Computation and Storage:
SEGMC buf_addr, mode0, value0,

mode1, value1,
mode2, value2,
mode3, value3

Arguments: buf_addr refers to OPENC

modei is a boolean or an ordinal, 0 or 1. If mode = 0, value is taken as the coordinate
of the vector end point, the origin of the coordinate system being at the starting point
of the path. If mode = 1, value is the component of the current vector.

valuei is a floating point number in engineering units, either a coordinate within the
path or the component of the current segment, according to "modei".

The argument "modei" and "valuei" must be written for all axes in increasing order, starting at 0. If
axis 3 is not involved, mode3 and value3 can be omitted. If axis 0 is not used, mode0 and value0
must be present, but their contents are not relevant, provided axis 0 was not mentioned in instruction
OPENC.
Examples of valid instruction pairs:

OPENC $5500, 0, 1
SEGMC $5500, 0, 35.2, ; axis 0

 1, 43.5 ; axis 1

E-300 46b

OPENC #BUF, 1, 3
SEGMC #BUF, 0, 0.0, ; axis 0, not used, values not relevant

0, 35.2, ; axis 1, involved
*, *, ; axis 2, not used, * can be used
1, 43.4 ; axis 3, involved

SEGMC computes the elements of the current segment and stores them into the buffer. It adds ∆S to
the PATH LENGTH in the header of the buffer and increments the segment number.
SEGMC up-dates also two variables for each involved axes:
 CFPABS(i) which holds the current coordinate in technical units (floating),
 CIPABS(i) which holds the current coordinate in IS units (integer).

The origin for CFPABS and CIPABS is the starting point of the path, not the system origin as given by
PABS.
Partitioning of Long Straight Vectors:
If the modulus of a single vector ∆S is ≥ 2^23, the instruction SEGMC automatically generates two or
more partial vectors. This partitioning is fully transparent to the programmer, but the size of the
interpolation buffer is affected.
Next Free Storage Location:
NEXTC dest, buf_addr
Action: NEXTC returns into "dest" the first free location after the buffer starting at "buf_addr".
This instruction is used to built several path buffers in sequence.

Path Execution:
EXECC buf_addr
Action: The path stored at "buf_addr" is outputted to the motion generators. The flag

RUN(15) is on during the motion. The buffer remains unchanged; it can be executed
again and again. The variables controlling the velocity -SPLD(15), SPLI(15)- have to
be set prior to executing EXECC.

E-300 46b

Example: This example assumes that:

1) The KMUL of the implied axes have been computed from the mechanical data
and <NDIV>, see example of sect. 7.1.6.,
2) SPLD(15) and SPLI(15) have been loaded.

BUFFER: DO1R 1000 DUP ?

INTERPOL: FMUL KMUL(4), 4000.0, 1.005; Scale factor for path axis *)
OPENC #BUFFER, 0, 2 ; Buffer for axes 0, 2
SEGMC #BUFFER, 0, 0.2, ; First segment, axis 0

 0, 0.0, ; axis 1 not implied
 0, 0.4 ; axis 2

SEGMC #BUFFER, 0, 0.75, ; Second segment
 0, 0.0,
 0, 0.94

EXECC #BUFFER ; Execution
WT RUN(15) ; Wait for path end
NEXTC RA, #BUFFER ; RA contains address for the next

; buffer
.......

*) 4000.0 is supposed to be the largest KMUL of the implied axes. The multiplication by 1.0005
ensures the condition of sect. 7.4.1. This multiplicator factor does not arm the geometric accuracy,
merely it slightly modifies the path velocity

E-300 46b

8. EXAMPLES OF PROCEDURES

The purpose of this chapter is to present several procedures involving the various E-300 functions.
The procedures serve also as programming examples.
A program is generally written according to the following structure:

MODule directive
Equivalence Statements
Constant Definitions (FLASH-Variables)
Variable Definitions (RAM-Variables)
Procedures
Main Program(s)
"END label" Directive

The order of the items between MODule directive and END directive is not mandatory.

8.1. Dead Time Procedures

The timers of the E-300 are the dedicated variable TMR(i), i = 0 to 7, associated with the control and
status bits TAF(i). Whenever TAF is set, the contents of the corresponding TMR is decremented
every millisecond. TAF is automatically reset when <TMR> goes through zero. Split timing is possible
by switching TAF on and off. TMR belongs to the VO4S-type.
The procedures "WAIT" and "WAITS", introduce a dead time into a process. WAIT needs an
argument in millisecond for short timing; WAITS accepts a time in seconds and decimal fractions. The
procedures are fully re-entrant, i.e. they can be called simultaneously from all programs as they use a
different timer for each simultaneous program through PNB-indexing.

Procedure Calls:
WAIT time ; parameter 0 = time in ms, immediate integer

; or numerical variable

WAITS time ; parameter 0 = time in seconds, immediate
; floating-point number or variable

Procedure Listings:

WAIT: MOV TMR(PNB), %(0) ; time into TMR indexed by the
; program number

SET TAF(PNB) ; activation of timer
WT TAF(PNB) ; wait if timer active
RET

WAITS: FMUL RA, %(0), 1000.0 ; seconds -> milliseconds
CINR TMR(PNB), RA ; time in ms, integer
SET TAF(PNB)
WT TAF(PNB)
RET

8.2. Procedures for I/O Control

The procedure "Set an Wait", SW, sets an output (more generally a boolean variable) and waits for an
acknowledge input.
Procedure Call:

SW var1, var2 ; parameter 0 = variable to be set
; parameter 1 = acknowledge signal,

E-300 46b

Procedure Listing:

SW: SET %(0)
WF %(1) ; wait if var = 0
RET

The procedure "Wait with Timeout", WTMT, is very useful in most control systems: many
dysfunctions can be detected and signaled if an acknowledge signal does not come in time.

Procedure Call:
WTMT var, ; parameter 0 = acknowledge signal, eventually with /

time, ; parameter 1 = time in sec. floating
label ; parameter 2 = return label if time-out occurs

TIMOUT: …. ; Return label in case of time-out.
; Appropriate action can be taken.
; TIMOUT must be at the same nesting level as WTMT.

Procedure Listing:

WTMT: FMUL RA, %(1), 1000.0
CINR TMR(PNB), RA ; time in ms
SET TAF(PBN) ; activate timer

WTMT1: IFT %(0) RET ; test var, normal return if variable = 1
JT TAF(PNB), WTMT1 ; test timer flag, loop if set
RETJ %(2) ; time-out occurs, return and jump to
NOP ; TIMOUT

8.3. Positioning Procedure

The procedure accepts either a target position (absolute move) or a displacement (relative move). Up
to 4 axes may be simultaneously controlled, the velocity is passed to the procedure as a parameter,
exit of the procedure after starting the motions or after the completion of the moves, as specified by a
parameter.
The displacement or the coordinate are given as a number of technical units, such as mm. inches,
degrees or the like. The displacement must be a floating-point number. The scale factors, KMUL, are
supposed to be already computed.

Procedure Call:
POS axis, mode, displ., speed, wait,

axis, mode, displ., speed, wait
With: axis = number of the axis to be activate, 0 or 1 (ordinal type)

mode = positioning mode; 0 for absolute, 1 for relative (ordinal type)
displ = displacement or coordinate (floating type)
speed = velocity to SPLD, 0..32639 (ordinal type)
wait = wait flag: 1 if the procedure must wait until the motion is executed (ordinal)

Procedure listing:
X = 0 ; AXIS
Y = 1

POS: RES RF ; pointer in parameter structure
POS1: JNPAR %(RF), POS2 ; end of the structure ?

E-300 46b

MOV RA, %(RF) ; get axis number into RA
MOV SPLD(RA), %(3+RF) ; get speed
MOV RC, %(2+RF) ; get displacement
FMUL RC, KMUL(RA) ; convert from units to steps,

; all KMUL already computed !
CINR RC ; displ. in IS-units
IFZ %(1+RF) ISUB RC, PABS(RA) ; absolute ?
IMG RA, RC ; initialize motion
WF ZSF(RA) ; wait end of previous move
SET RUN(RA) ; start motion
IADD RF, 5 ; next axis
JMP POS1

; now, all the axes are started

POS2: RES RF ; parameter structure pointer
POS3: MOV RE, %(4+RF) ; get mode parameter

JF RE, POS4 ; next axis if no wait
MOV RA, %(RF) ; get axis number into RA
WT RUN(RA) ; wait until motion stopped

POS4: IADD RF, 5 ; next parameter set
IFNPAR %(RF), RET
JMP POS3

8.4. Jogging Procedures

A motion in the "Jogging" mode is controlled by a boolean variable, generally a push-button or a
switch. The motion starts when the button is depressed and stop gently when it is released. If the
procedure is called when no button is depressed, exit is immediate.
JOGPK = KEY(21) ; Right arrow button (see sect.6.7.2)
JOGNK = KEY(30) ; Left arrow button

JOGSP: DO2F 10000, ; jogging velocities for all
5000, ; 4 axes, to be loaded into SPLD
5000,
8000

NLIM: DI4F 0, ; soft limits in IS-units
0,
0,
0

PLIM: DI4F 100000,
200000,
75000,
500000

; jogging procedure call:
; JOGGING button, direction, axis

; with: button = jogging control
; direction = 1 for negative motion, 0 for positive
; axis = axis number 0..3

; jogging procedure:
JOGGING: IFF %(0), RET ; button ?

E-300 46b

MOV RA, %(2) ; get axis number
MOV SPLD(RA), JOGSP(RA) ; set jogging speed
MOV SPLI(RA), #ADC ; potentiometer active
MOV RB, PLIM(RA) ; get limit
IFNZ %(1), MOV RB, NLIM(RA) ; negative motion ?
ISUB RB, PABS(RA)
IMG RA, RB ; initialize and
SET RUN(RA) ; start motion
WT %(0) ; motion is running
RES SPLD(RA) ; set speed to zero
WF ZSF(RA) ; wait until motion terminated
RES RUN(RA) ; cancel motion
RET

; Main Program
LOOP:

JOGGING JOGN, 1, 0 ; axis 0, neg. direction
JOGGING JOGP, 0, 0 ; axis 0, pos. direction
JOGGING JOGN, 1, 1 ; axis 1, neg. Direction
JOGGING JOGP, 0, 1 ; axis 1, pos. direction

8.5 Axis Position Display
The actual position of the axes X and Y are displayed in a continuous manner by a simultaneous
program running in the background.

MOD 2

INCL (SYSTEM.INC)
INCL (KBD300.INC)

X = 0
Y = 1

MAINPROG:
.........
ASIM 1, DISPSIM
........

; Display simultaneous program:
DISPSIM: KPR CLS ; VFD cleared

KPR CURSOF ; cursor off
STPR <"X Y "> ; legend
MOV PMF0(PNB), 3 ; printing format
MOV PMF1(PNB), 3

DISPS1: CFLO RA, PABS(X)
FDIV RA, KMUL(X) ; convert to unit
KPR DP, 1 ; display position
FPR RA ; printing
CFLO RA, PABS(Y)
FDIV RA, KMUL(Y)
KPR DP, 12
FPR RA
MOV TMR(PNB), 70 ; to slacken the display
SET TAF(PNB)

E-300 46b

WT TAF(PNB)
JMP DISPS1

E-300 46b

APPENDIX A: E-300 DEDICATED VARIABLES
Legend:
Type: according to the definitions of chapter 4.

"boolean" stands for non mapped boolean variables.

Array size: Size of array, not always physically fully implemented.

Range: "full" means full range according to the variable type

Init: "R": actual value given by device
"prec.": preceeding value retained into battery-backed RAM
"0": initialized to 0

Assy: "yes": the A-600 assembler has definition for the variable name,
" ": the definition must be provided by the source program (included definition file).

Variable
Name Type (address) Function Array Range Init Assy

ADC VO1S (BP $13C) Analog to Digital Converter 1 Full R
BST Boolean Driver BooST Output 16 0
BSTE VBS (BP $050) BooST Enable 16 0
BSTI VBS (BP $060) BooST Invert 16 0
CST0 VO1S (BP $15E) ConSTant=0 1 0
CST255 ConSTant 255 ConSTant=255 1 $FF
DAC VO1S (BP $13D) Digital to Analog Converter 1 Full 0
DIV VO2S (BP $0DC) Frequency DIVider 16 40..300 $0100
DIR VBS (BP $030) DIRection flag 16 R
FAULT IN($0C0) Axis FAULT 15
FLG Boolean General Purpose FLAGs 256 Prec yes
IN Boolean Inputs 128 R yes
INA IN($0A0) Reference inputs 2 R
INAE VBS (BP $070) INput axis A Enable 16 R
INAI VBS (BP $080) INput axis A Invert 16 R
INB IN($0B0) Inputs 2 R
INBE VBS (BP $090) INput axis B Enable 16 R
INBI VBS (BP $0A0) INput axis B Invert 16 R
INIT VBS (BP $029) INIT input (temp. sensor) 1 R
KAF VBS (BP $010) Key Available Flag 32 0
KEY Boolean Keys as boolean 32 R yes
KCOD VO1S (BP $060) Keyboard CODe 2 Full 0
KDN VO2S (BP $0BC) Acceleration 16 1..65535 $03E8
KUP VO2S (BP $09C) Acceleration 16 1..65535 $03E8
KXCOD VO2S (BP $062) Keyboard matriX CODe 1 Full $10
LED boolean LEDs 8 0 yes
LSA VBS (BP $0B0) Limit Switch Acknowledge 16 0

E-300 46b

Variable
Name Type (address) Function Array Range Init Assy

NTC VBS (BP $028) Temperature Watching Mode
Flag 1 1

OUT boolean OUTputs 128 yes
PABS VI4S (BP $0FC) Position ABSolute 16 Full 0
PI 3.141592654 Constant
PMF0 VO1S (BP $06C) Print Mode Floating 0 (left) 8 0..10 3
PMF1 VO1S (BP $074) Print Mode Floating 1 (right) 8 0..10 3
PMI VO1S (BP $064) Print Mode Integer 8 0..10 6
RAD VBS (BP $02A) RADian flag 1 1
RST boolean Driver ReSeT output 15 0
RTE VO1S (BP $160) RunTime Error 1 R
RUN VBS (BP $018) RUN flag 16 0
SAF VBS (BP $008) Simultaneous Active Flag 8 0
SPLD VO2S (BP $07C) SPeed Limit Direct 16 0..32639 $1000
SPLI VO2S (BP $13E) SPeed Limit Indirect 16 Full #CST255
TAF VBS (BP $000) Timer Active Flag 8 0
TMR VO4S (BP $040) TiMeR 8 0
VACT VO2S(BP $160) ACTual Velocity 16 0..32639 R
VER VSTRS (BP $1C1) Interpreter Version (20 char) 1 R
ZSF VBS (BP $040) Zero Speed Flag 16 R

