
E.I.P. SA Tél. : 026 / 921 80 40 Fax : 026 /921 80 49
CH-1667 Enney

E I P E-300
English

UUNNIIPPRROOGG++ vveerrssiioonn 11..0022NNDD
GGeenneerraall ppuurrppoossee

pprrooggrraammmmiinngg llaanngguuaaggee ffoorr EE330000--NNDD aanndd EE--330000--CCMMPP
ccoonnttrroolllleerrss

Version: June 6th 2007

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 2

TTaabbllee ooff CCoonntteenntt::

1 Introduction ...6

2 Memory organization ..7
2.1 The user’s storage area..7

3 Coordinate System and Controller Configuration...8
3.1 Home Position ..8
3.2 Translation of the Coordinate System..9
3.3 Scale Factors and Constants ...10

3.3.1 The Length Scale Factor, SCALEK..10
3.3.2 Frequency Division Ratio, DIV ...11
3.3.3 Acceleration Constant KUP, Deceleration KDN...11
3.3.4 The Speed Scale Factor, FEEDK ..11
3.3.5 Soft Travel Limits, STROKE + / STROKE -..12
3.3.6 Current Boost Command, BOOST...12

4 Keyboard operating Mode and UNIPROG Utilities ...13
4.1 Switching the Power On. ..13
4.2 Menu Selection...14
4.3 Menu "OTHER" ..14

4.3.1 Access Flags and Access Code...14
4.3.2 Version Number ...15

4.4 "CONFIGURATION" MENU ...15
4.4.1 MGEN, Configuration of the Motion Generators ..15
4.4.2 REF, Configuration of the Home (or Reference) Position ..15
4.4.3 CTRL, Assignment of the Control Inputs..16

4.5 MOTION CONTROL Menu...17
4.5.1 TOOL, Tool Setting ..17
4.5.2 JOG, Jogging Motions and Tool setting ...17
4.5.3 CLOS: Closure Check..18
4.5.4 MODE: Mode Selection and Axis Position Display ..19

4.6 Menu ‘PROGRAMMING’ ..19
4.6.1 VECT: Program Execution (Vectors) ..19
4.6.2 FEED: Selected Feed Rates ..19
4.6.3 SAVE: Saving User's Programs and Data in the Flash Memory.19

4.7 FILE UTILITIES, File Manipulation...21
4.7.1 DIR: File Directory..21
4.7.2 DEL: Delete a File..21
4.7.3 COPY: File Copy..21
4.7.4 LOAD: Load the Flash Memory into the RAM..22

4.8 "DEBUGGING" Utility ...22
4.8.1 "TRACE" Utility ..22
4.8.2 "I/O" Control Utility ...22

5 UNIPROG Instructions ..24
5.1 Positioning Instructions...24

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 3

5.1.1 Absolute Positioning: ...24
5.1.2 Relative Positioning: ..25
5.1.3 Tool setting ..25

5.2 Other Motion Instructions ...25
5.2.1 Home Position Search: ..25
5.2.2 Closure Check: ..25
5.2.3 Teach-In Instruction: ..25
5.2.4 Setting of variables: ...26
5.2.5 Peck cycle (drilling): ...26
5.2.6 Tapping instruction:..27
5.2.7 Rectilinear Displacement ...27
5.2.8 Angle..27
5.2.9 Radius..28
5.2.10 Angular Shift ..28
5.2.11 Reference for automatic tool adjustment ...28

5.3 Input/Output and Display Instructions ..29
5.3.1 Wait for an Input:..29
5.3.2 Conditional Branch:..29
5.3.3 Output Control:...29
5.3.4 Complement of output:...31
5.3.5 Display of a value...31

5.4 Number Handling..31
5.4.1 Load Accumulator ..32
5.4.2 Store Accumulator ...32
5.4.3 Pointer Incrementation/Decrementation :...32
5.4.4 Save a Variable into the Flash Memory: ..32
5.4.5 Load the Digital-to-Analogue Converter (DAC): ...32
5.4.6 Frequency Converter control:...32

5.5 Program Control Instructions..33
5.5.1 Unconditional Jump: ..33
5.5.2 Subroutine Call: ...33
5.5.3 Program End, Subroutine End: ..33
5.5.4 Repeat Loop: ...33
5.5.5 Simultaneous Task Activation: ...33
5.5.6 Conditional Branch on Accumulator Contents:...34

5.6 Timing Instructions ...34
5.7 Arithmetic Instructions ..34
5.8 NOP and Directives ..34
5.9 Pause Flag ...35

6 The UNIPROG Editor...36
6.1 How to Read a Program ?..36
6.2 How to Modify the Contents of a Program Line ? ..36
6.3 How to Insert and Delete a Line ? ..37
6.4 How to set a Pause Flag ? ...37

7 Programme Execution ..38
7.1 The Execution Modes, menu ‘mode’ ..38
7.2 START and STOP Key Functions ..38
7.3 Fault Processing...38

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 4

8 Vector Generation and Contouring..40
8.1 Features and Space Definition ...40
8.2 Vector Generation ..40
8.3 Programming the Geometry of a Continuous Path ..40

8.3.1 Definition of a Straight Segment ..41
8.3.2 Definition of a Circular Segment ..42

8.4 Interpretation of the Geometric Files ..44
8.5 Execution of a Path ..45
8.6 Case not accepting the correction of the Tool..46
8.7 Display of the Contour Errors ...46
8.8 Examples..47
8.9 Summary of Contouring Instructions and Pseudo-Instructions ..48

9 UNIPROG Recapitulation..49
9.1 Instructions: ..49
9.2 Inputs and outputs: ...51

10 E300 Wiring..52
10.1 Compact Controller Type E300-CMP...52

10.1.1 Compatibility with E-600...52
10.1.2 I/O Connector...52
10.1.3 I/O EXT Connector...53
10.1.4 RS 232 Connector ...53
10.1.5 E-600-3 Module, 2 Phase Step-by-Step Motor Translator from EIP53
10.1.6 ANALOG I/O Connector...54

LLiisstt ooff FFiigguurreess::

Figure 3-1 : Home and Travel Position...8
Figure 3-2 : The UNIPROG Coordinate System ..10
Figure 3-3 : Frequency or Speed versus Time...11
Figure 4-1 : I/O Utility..23
Figure 5-1 : Peck Cycle ..27
Figure 8-1 : Contour with zero diameter ...42
Figure 8-2 : Rotation Modes ...43
Figure 8-3 : Contour Example ..44
Figure 8-4 : Waiting position according to the displacement direction46

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 5

LLiisstt ooff TTaabblleess::

Table 4-1 : Ref inputs ...16
Table 5-1 : Inputs and Outputs ...30
Table 5-2 : I/O Module addresses ..31
Table 9-1 : UNIPROG+ Instructions ...50
Table 9-2 : UNIPROG+ Inputs and Outputs ...51
Tableau 10-1 : E300 et E600 I/O comparison ...52
Tableau 10-2 : E300 I/O Connector, 19 pin Burndy ...53
Tableau 10-3 : E600-3 Connector, 8 pin Burndy..53
Tableau 10-4 : E600-3, Current Setting..54
Tableau 10-5 : E300 Analog I/O connector ..54

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 6

11 IInnttrroodduuccttiioonn
The E-300 Motion Controllers are aimed at the market segment: special machine-tools,
handling equipment's and assembly automation. Intrigate motion control problems and
elaborate sequencing can be solved easily at low cost.

• The E-300 controllers are available for 1 or 2 axes, with step-motor translators for 2
phases motors.

• EIP SA has a proprietary language, the "PINX-E" and a program development tool,
"APEX", to create applications running on his controllers. But these elaborate instruments
are not optimal for practical situations.

• The UNIPROG program is a powerful tool to write and to debug applications directly at the
controller keyboard.

• The UNIPROG program itself is written in the PINX-E language and it is a simple matter to
produce enhanced versions, for example by the addition of application specific
instructions.

The aim of this manual is to allow the inexperienced user to master UNIPROG after a
thorough reading. Some knowledges of step motor techniques is a pre-requisite to avoid a
trial-and-error approach. The reader is urged to read the sections 2 and 3 before attempting to
write programs or to use the utilities.

The section 4 gives a complete description of the operating mode, starting at the power-up.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 7

22 MMeemmoorryy oorrggaanniizzaattiioonn

22..11 TThhee uusseerr’’ss ssttoorraaggee aarreeaa
Using the UNIPROG utilities, the user is able to organize its storage area in the battery
backuped live memory. The SAVE utility writes the entire user’s area into the Flash memory.

Within the user’s area, a fixed portion is reserved to the configuration parameters (see section
4.4). The remainder is available for programs and numerical data. The UNIPROG editor stores
lines. An instruction or a numerical data are always stored as one line. 3000 lines are
available; 100 files may be opened within the line set. The files are numbered 00 to 99.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 8

33 CCoooorrddiinnaattee SSyysstteemm aanndd CCoonnttrroolllleerr CCoonnffiigguurraattiioonn
This section defines the coordinate conventions, provides information about the motion
generators and helps calculate the scaling factors.

33..11 HHoommee PPoossiittiioonn
The stepper axes requires a home position before starting any useful work. Two different
situations are common:

The machine has its own coordinate system, such as a jig boring machine for example
The coordinate system is fixed by the operator anywhere in the travel, example a rotary
division table.

In the first case, the slide must be fitted with a home switch for the automatic and precise
determination of the initial coordinate system.

The searching of the home position can be done by the operator or by the initialization
program.

UNIPROG accepts a home switch anywhere in the travel.

If the home switch is not located at the ultimate end of the travel, it must be closed on
one side and open on the other side in order to allow an unambiguous decision within
the controller, see Figure 3-1.

+

NEG STROKE POS STROKE

0

_

HOME SWITCH (PXMTY SWITCH)

HOME POSITION

Figure 3-1 : Home and Travel Position

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 9

The process of finding the home position has three phases:

Phase 1: The slide walks out of the home switch. (This phase takes place only if the
home switch is active while entering the process.)

Phase 2: Travel toward the home switch and stop with a ramp.

Phase 3: Travel out of the home switch at reduced speed and immediately stops when
the switch deactivates.

The phase 3 is responsible for the accuracy of the home position. It may be useful to notice
the direction of the motion in phase 3 in order to take an eventual backlash into account.

The travel speeds are configuration parameters.

The E-300 motion controller has 4 inputs which can be used as Home -or Reference-
switches: INA0, INA1, INB0 and INB1.

If an axis does not use a home switch, the origin of the initial coordinate system will be fixed
by the execution of home function without any motion.

The configuration menu has also provision for soft travel limits: STROKE+ and STROKE-.

The direction of the motions involved in the determination of the home position is governed by
the sign of REF SPEED in the configuration.

If a soft travel limit is not convenient -with a rotary table, for example- STROKE+ and
STROKE- must be set to 0. This situation requires NO REF for this axis.

33..22 TTrraannssllaattiioonn ooff tthhee CCoooorrddiinnaattee SSyysstteemm
Within UNIPROG, the travels are given either as "relative" or as "absolute" values. This
applies to the programmed motions as well as to the JOGGING menu.

A relative motion is measured from the current axis position; the coordinate system is
meaningless. For an absolute motion, the coordinate of the target point is given; the
coordinate system actually used makes sense.

To create many coordinate systems, tools have been introduced (see Figure 3-2).

The Current Coordinate System is set-up by the instruction TOOL. The programmer may
change the current system at will. If no TOOL instruction comes to execution, the current
system is superimposed to the base system. Changing the current system may prove useful
with multi-spindle machines or with handling equipment to translate from the "pick" to the
"place" space.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 10

TOOL 1

TOOL 0

T0
X0

T1

Y1

X1

Y

X

TRAVEL LIMIT Y

TRAVEL LIMIT X

CURRENT SYSTEM

HOME SYSTEM

HOME POSITION

CURRENT SYSTEM

Y0

Figure 3-2 : The UNIPROG Coordinate System

33..33 SSccaallee FFaaccttoorrss aanndd CCoonnssttaannttss
The factors and constants discussed in this section are to be given for each axis in the
configuration menu.

33..33..11 TThhee LLeennggtthh SSccaallee FFaaccttoorr,, SSCCAALLEEKK
This factor allows programming the travels directly in engineering units.

For a step motor drive, SCALEK is the number of pulses required at the input of the translator
to effect one unit of travel.

The micro-stepping 2-phase translators needs 8 pulses for one full step. With the most usual
step motors (1.8 degree/step), 1600 pulses produce exactly one revolution.

Examples:

Lead screw slide driven by a 1.8 degree stepper:
Timing belt 1:2 from motor to screw, thread pitch 5 mm, length unit 1 mm.

1600 pulses for one motor revolution,
3200 pulses for one lead screw revolution,
3200/5 pulses for 1 mm, then SCALEK = 640

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 11

33..33..22 FFrreeqquueennccyy DDiivviissiioonn RRaattiioo,, DDIIVV
The Figure is a plot of the pulse frequency generated by the motion generator, i.e. the speed
of the axis, during a single motion. The magnitude of the acceleration and of the deceleration
decreases linearly with the speed in order to compensate for the weakening of the motor
torque. The maximum of the frequency has to be set for each axis to preserve a sufficient
torque margin at high speed.

The DIV parameter sets the highest frequency according to

DIV = 15'875/fmax [kHz]

The actual speed during a move is limited by the programmed speed. If the motor has a high
torque at high speed, it may be advantageous to set fmax very high to obtain almost straight
ramps.

t

FREQUENCY
(Speed)

Max. FREQ

Progr. FREQ.

Figure 3-3 : Frequency or Speed versus Time

33..33..33 AAcccceelleerraattiioonn CCoonnssttaanntt KKUUPP,, DDeecceelleerraattiioonn KKDDNN
These two parameters define the initial -or final- slope of the ramps. Their values are given in
kHz/s or kpulse/s2. As before, the frequency is the step frequency.

Values from 200 to 10000 kpulse/s2 are generally used.

33..33..44 TThhee SSppeeeedd SSccaallee FFaaccttoorr,, FFEEEEDDKK
The speed scale factor -or Feed Constant- allows the feed values to be given in engineering
units: mm/s, m/min, rev/sec, etc.

For stepper drives:

 FEEDK = pulse frequency for one feed unit [kHz]

Examples:

 (For the electro-mechanical arrangements, see the examples of sect. 3.3.1)

a) The feed rate is expressed in en m/min.
SCALEK =640, i.e. 640 pulses for 1 mm

or 640'000 pulses for 1 m
or a frequency of 640 kHz for 1 m/s

640/60 kHz for 1 m/min
FEEDK = 10,667

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 12

b) Rotational in degree per second.

SCALEK = 111.111, i.e. 111.111 pulses for 1 deg,
or 0.111111 kHz for 1 deg/s

FEEDK = 0.111111

c) Speed in yard/min.

1 yard = 36 inches, 9676.19 * 36 for one yard
for 1 yard/min the required frequency is (9.6762 * 36)/60 kHz

FEEDK = 5.806

The actual feed rate can be at most equal to the maximum speed as set by DIV. The highest
attainable speed, expressed in the chosen unit, is given by

15'875/DIV/FEEDK

N.B. The feed rate is in accordance with the programmed value only if the panel potentiometer
is turned fully CW.

33..33..55 SSoofftt TTrraavveell LLiimmiittss,, SSTTRROOKKEE ++ // SSTTRROOKKEE --
The soft travel limits must be expressed in the length unit of section 3.3.1. Enter the negative
limit with a minus sign. Positioning and jogging motions are automatically limited to STROKE+,
resp. STROKE- ; contouring motions are not a priori limited, but an over travel results in a fault
situation, see section 7.3. 'Fault Processing'.

Due to internal register capacity limitations, the travel limit parameters have to meet:

STROKE+/- * SCALEK * DIV < 231 231= 2.147 * 109

Violation of the above rule is signaled while by the controller when the CONFIGURATION
menu is left.

If soft travel limitations are not desired, STROKE + and STROKEN must have a value of 0.

33..33..66 CCuurrrreenntt BBoooosstt CCoommmmaanndd,, BBOOOOSSTT
This parameter controls the action of the /BOOST line and its range is limited to 0..3.

BOOST = 0 : /BOOST is always deactivated (high)
BOOST = 1 : /BOOST is active during a move (low) and inactive whenever the axis is at

rest
BOOST = 2 : /BOOST is always activated (low)
BOOST = 3 : /BOOST is high during a move and low at rest.

With the E-300 translators, BOOST is normally set to 1 ; at rest, the current is reduced to
about 60% of it set value.

It is possible to set BOOST to 0 with small motors or to set BOOST to 2 if the full torque is
required at rest.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 13

44 KKeeyybbooaarrdd ooppeerraattiinngg MMooddee aanndd UUNNIIPPRROOGG UUttiilliittiieess
This chapter describes the operation of the E-300 motion controller running under UNIPROG.
The description starts at the power-up and supposes that all connections to the outer world
are established. The menus are discussed in the sequence required for a first approach of the
controller. The programming, the editor, the debugging are subject of the following chapters.

44..11 SSwwiittcchhiinngg tthhee PPoowweerr OOnn..
The display shows the version of the system programs:

UNIPROG+ V x.xx
E-300 x.xx mm.dd.yy

After this, the E-300 may display:

RAM ERROR
FORMAT YES NO

Answer NO after the loading phase in order to configure the parameter " LAST TOOL NB "
and to avoid the loss of file " 0 ". By answering NO the parameter " LAST TOOL NB " will not
be used for opening file "0"and the control of the RAM memory loss will not be updated.
By answering YES file "0" is opened and its contents are cleared. The control of the
RAM is updated.

Menu #1:

1 MOTION CONTROL:
REF JOG CLOS DISP

During the execution of any programs, the operator has access to all menus and it can make
use of the utilities. Depressing the STOP button can stop a program.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 14

44..22 MMeennuu SSeelleeccttiioonn
The arrow keys are used to select a menu (↑ or ↓)

1 MOTION CONTROL
TOOL JOG CLOS MODE

2 PROGRAMMING
EDIT VECT FEED SAVE

3 DEBUGGING
TRACE I/O

4 FILE UTILITIES
DIR DEL COPY LOAD

5 CONFIGURATION
 MGEN REF CTRL

6 OTHER
VER COUNT ACCES

A menu offers up to 4 options; an option is entered by one of the function key, F1..F4. The
lower line of the display contains the labels of the function keys. The ESC key is always active
to escape from a sub-menu.

If the "No Access" message is displayed when attempting to enter a function, the access to
this function is not granted, see section 4.3.1.

NO ACCESS
press any key

44..33 MMeennuu ""OOTTHHEERR""

44..33..11 AAcccceessss FFllaaggss aanndd AAcccceessss CCooddee
In order to grant selective access, individual access flags can be assigned to the functions.
For example, the machine operator may have access to the Jogging menu but not to the
editor.
Whatever the status of the access flags, entering the access code grants the general access.
After switching the power on, there is no access to functions with the flag set.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 15

To have a general access, proceed as follows:

• Select the ACCES menu, press ENTER
• The message "ENTER ACCESS CODE" prompts the operator to enter the code

31415
• Press ENTER to terminate the entry.
• Press ESC to return to the menu selection.

Generally the entry of any number terminates with ENTER and typing errors can be corrected
with CLR.

Entering the access code while the general access is granted will protect all functions with an
access flag set.

To set the individual access flags, select the ACCESS menu and enter the code as described
above. The functions -or group of functions- may be selected with the arrow keys. Entering a
"1" gives the access, with a "0", the function is accessible only after introduction of the code.

44..33..22 VVeerrssiioonn NNuummbbeerr
During the depression of the F1 key, the version numbers of the programs installed in the
controller are displayed.

These data may prove valuable for service purpose.

44..44 ""CCOONNFFIIGGUURRAATTIIOONN"" MMEENNUU

44..44..11 MMGGEENN,, CCoonnffiigguurraattiioonn ooff tthhee MMoottiioonn GGeenneerraattoorrss
The F2 key enters this sub-menu, starting from the CONFIGURATION menu. The parameters
to be specified to the controller are organized in rectangular array: vertically, the arrow keys
select the physical parameter; horizontally, the axis keys (X, Y) specify the axis to which a
parameter belongs.

All these parameters have been discussed at chapter 3, a listing appears below.
DIV Frequency divider
KUP Acceleration Constant
KDN Deceleration Constant
SCALEK Length Scale Factor
FEEDK Speed Scale Factor
STROKE + Stroke in Positive Direction
STROKE - Stroke in Negative Direction
BOOST Current Booster Action, see 3.3.6

44..44..22 RREEFF,, CCoonnffiigguurraattiioonn ooff tthhee HHoommee ((oorr RReeffeerreennccee)) PPoossiittiioonn
Enter the REF sub-menu with the F3 key. As before, the parameters are organized in a
rectangular array.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 16

REF INPUT Number of the input used as reference input (Table 4-1 : Ref inputs).
Specifying number 8 can inhibit the reference procedure. In this
case, when reference function is involved, the position counter is
reset to zero without any motion.

SPEED TO REF Speed of the axis while searching its home position. Enter the speed
in engineering units, as defined by FEEDK. A minus sign changes
the direction of the home search.

CLOSURE GAP see section 4.5.3, enter engineering units

SWITCH: Enter "1" for a normally open home switch, "0" for a normally closed
switch.

REF SPEED BACK This entry is the ratio of the speeds of the two phases of the home
position determination. For example SPEED TO REF is 100 mm/s
and the ratio is 5. The axis will move out of its home switch at 20
mm/s. A high entry enhance the accuracy of the home position

REF INPUT
Parameter Physical input Remark

0..7 IN 0..7

8 - REF without movement

9 Fault signal from translator

18 INA from E-600-18 for
Yaskawa

For Yaskawa, and in case of common limit-switch
and reference switch.

60 INA0

61 INB0

62 INA1

63 INB1

Table 4-1 : Ref inputs

44..44..33 CCTTRRLL,, AAssssiiggnnmmeenntt ooff tthhee CCoonnttrrooll IInnppuuttss
Enter CTRL with the F4 key. This sub-menu is intended to assign a physical input to three
program execution functions. This assigned inputs then work as if they were ored with the
panel keys, see also section 5.3.

If an external control input is not required, assign input 64 to this particular function.

EXTERNAL START Program Start, uses a normally open contact
EXTERNAL PAUSE Program Hold, normally closed contact
EXTERNAL STOP Program Abort, normally closed contact.

This sub-menu also contains other parameters:

DISPLAY FORMAT 1-6 The number of digits to be written at right of the decimal point:

2 HAND START Assign an input (0..7) for two hand start, the first input is selected with

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 17

EXTERNAL START parameter. If two hand start is not wanted, enter 8 as
number.

LAST TOOL NUMBER Select the number of tools for machine-tools use. It limits the number of
tools used, so as not to unnecessarily fill up program memory. Enter 0 for no
tool. Entering 1 means the use of two tools.

MAX RPM 10 Volts Select the ratio between DAC volts and RPM of the spindle. Enter the RPM
number when DAC output = 10 volts.

FEED CTRL BY ADC If 0, the speeds of step motors are controlled by the ADC input, if 1, the ADC
input controls the speeds, via the potentiometer, if equipped.

LAST DELAYED
OUTPUTS

Specifies a number of outputs for which the reset to zero is delayed.
Possible values are between 0 and 7, giving the total number of delayed
outputs from 0 to 7 accordingly. By specifying 0, no output is delayed. With a
value of 7, outputs 0, 1, 2, 3, 4, 5, 6 and 7 are delayed. The default delay
value is 1 s, this value can be modified within the program (see instruction
SET).

TOOL L/R INVERT (Used in contouring). Makes it possible to restore the correct tool side in a
path, depending of the axis orientation. By entering the value 0, the side is
considered to be normal, the reference of the surface is positive towards the
upper right quadrant. Enter 1 for the other case.

LANGUAGE Specifies the language in which certain messages will be displayed:
0=English, 1=French, 2=German.

44..55 MMOOTTIIOONN CCOONNTTRROOLL MMeennuu
This menu introduces 4 sub-menus intended to manually move the axes and to display their
positions.

The functions TOOL (Tool setting), JOG (Jogging) and CLOS (Closure check) are not
available while a program is running.

44..55..11 TTOOOOLL,, TTooooll SSeettttiinngg
In this menu, the origins and the diameter of the tools are accessible. 2 origins and one
diameter are associated with each tool to achieve correction of the tool trajectory. The values
are stored in file number 0 which is automatically opened when the parameter ‘LAST TOOL
NUMBER’ is set. In the case of a wrong manipulation, file 0 does not have a suitable size and
the following message appears:

FILE 0 NOT FORMATTED

 Press any key

In this case, the parameter ‘LAST TOOL NUMBER’ must be reconfigured.

44..55..22 JJOOGG,, JJooggggiinngg MMoottiioonnss aanndd TTooooll sseettttiinngg
In this sub-menu, the upper display line shows the selected axis, its position in the basis
coordinate system if no tools are used, or the position relative to the current tool. The lower
line displays the current tool and the value of the incremental move effected by arrow keys.
Depressing one of the arrow keys produces a move, the length of which is the value shown as
"INCREMENT". If the depression ends before the end of the move, the axis stops with a
deceleration governed by KDN. A new depression produces again a complete increment.
The F8 (JOG MODE) key move the cursor up and down. If the cursor stays in the lower line, a
value can be entered (through the numerical pad) in lieu of the "INCREMENT" selected by F3

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 18

and F4. If the cursor in the upper line, a destination coordinate can be entered. Upon depression
of the ENTER key, the move starts. The ENTER key must be held for the all length of the move.

This utility allows, in addition to its function of the manual displacement, to record the origins
for the tools. The selection of the tool number is done by using F1 and F2 keys.

Recording a position is carried out in the following way:
1. Reach the position by jogging.
2. Select tool number (F1 and F2) and the relevant axis.
3. Press F5 key to authorize the input of the value of the new origin.
4. Enter the value on the numerical keypad, then validate it with ENTER key.

The new origins are stored in file 0 which contains ‘FDATA’. To easily consult these origins, go
to the TOOL menu accessible from MOTION CONTROL menu. Modifications can also be
done from this menu.

Note:
For small adjustments, the correction of the origin can be entered in an incremental way using
the arrow keys. the value of the increment will be added or removed from the origin. This is
done without generating any displacement.

In the lower left quadrant the display indicates ‘ALL’. If F1 is depressed, the correction of the
origin will be applied to all of the tools. The selection is confirmed by the blinking of the led F8
and by the text at the bottom left ‘ADJ ALL’. In such cases each hit on the arrow keys shifts the
origin of all the tools.

The F7 (REF) key starts the reference search. After switching the power on, a move is not
enabled if the home position has not been set. However, incremental jogging motions are
enabled.

44..55..33 CCLLOOSS:: CClloossuurree CChheecckk
A step motor drive is an open loop arrangement and it sometime desirable to have a periodic
check of the validity of the actual position of the axis. The closure check verifies that the vector
polygon closes around the home position within a given gap, the CLOSURE GAP. The check
is effected in the direction adopted in determining the home position in order to eliminate
backlash errors. A closure outside of the gap stops the program and issues an error message.
In any case, the axis is at his home position after a closure check.

Depress F3 to enter the sub-menu, select the axis and depress REF. The result of the check
is displayed on the screen:

CLOSURE WITHIN GAP
press any key

or

POS ERROR 1.234
press any key

If the axis has no home switch, the closure check does not work and a result within the gap
will always be displayed.

After the check, the axis is at his home position.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 19

44..55..44 MMOODDEE:: MMooddee SSeelleeccttiioonn aanndd AAxxiiss PPoossiittiioonn DDiissppllaayy
The MODE sub-menu displays the position of the two axes in the current coordinate system.
MODE can always be called, even during the execution of a program. The display format is 6
digits, fixed point. The number of digits at the right of the decimal point has been selected at
section 4.4.3.

The execution modes are explained in chapter 7.

44..66 MMeennuu ‘‘PPRROOGGRRAAMMMMIINNGG’’
This menu contains all the functions needed to write, execute and to save programmes. The
UNIPROG editor will be the subject of chapter 6 after having introduced the instructions.

44..66..11 VVEECCTT:: PPrrooggrraamm EExxeeccuuttiioonn ((VVeeccttoorrss))
In this sub-menu, the operator selects two programs:
• the POWER-ON-PROGRAMME, which comes to execution just after switching the power

on,
• the START PROGRAMME, i. e. the program which is started after each depression of the

START button (or after each activation of the designated external "Start" input).

It is important to notice that the Power-on-Program is executed after a full stop of the controller
through the STOP button (or the corresponding external input). If this initialization program is
not wanted, simply assign the program number 100 to the Power-on-Program.

44..66..22 FFEEEEDD:: SSeelleecctteedd FFeeeedd RRaatteess
The velocity -or the Feed Rate- used as argument in the motion instructions are taken from the
FEED table of this sub-menu. They are referred to by their position in the table, 0 to 6. The
feed rates must be expressed in units selected while computing FEEDK.

44..66..33 SSAAVVEE:: SSaavviinngg UUsseerr''ss PPrrooggrraammss aanndd DDaattaa iinn tthhee FFllaasshh MMeemmoorryy..
This operation is not necessary after each modification of the files or the configuration,
because the volatile memory (RAM), which is used during running and edition, is equipped
with a battery. The saving gives a additional security for the datas in case of battery failure.

Three items can be saved separately:
1. All the files (programs)
2. Only the configuration
3. The number ('name') of the content.

SAVE FLASH # 2.23

PROG CONF NAME

All open files are written to the Flash at once. The time to write the data strongly depends
upon the amount of data to be rewritten in the Flash and it may last for a few seconds.

In order to avoid writing over valuable data, the warning

SAVE FLASH # 2.23

 YES NO

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 20

will be displayed. The identification code (here 2.23) is the actual code in the Flash. If the
operator wants to write the data, it press F3 and the saving starts.

To change the code

CHANGE NAME ?
NO

Now, F4 aborts the saving. Entering a code -or NAME- will start the writting in the Flash after
the depression of ENTER.

SUCCESSFUL WRITING
 press any key

or

WRITE ERROR
 press any key

will be displayed.

A writing error is an indication of a Flash memory failure.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 21

44..77 FFIILLEE UUTTIILLIITTIIEESS,, FFiillee MMaanniippuullaattiioonn
The file utilities always act on the RAM contents.

44..77..11 DDIIRR:: FFiillee DDiirreeccttoorryy
The screen gives information about all open files. A file can be opened by the editor or by the
copy of an existing file.

FILE SIZE PROT FREE
 12 45 NO 670

The above example means:

• file 12 is open
• its size is 45 lines
• it is not protected
• there are still 670 lines free in the user area.

If the required file does not exist (was not opened), the message is as follows:

FILE SIZE PROT FREE
 18 NOT FOUND 670

The DIR utility may be used in several ways:
• To view all the files
• Use the arrow keys to explore the directory
• To view the status of a particular file

Enter its file number (followed by ENTER). One of the above screen shows the file status:
• To alter the protection status of a file
• The F3 key toggles the protect bit (YES = protected, NO = access granted)

A protected file cannot be edited or deleted. To give the end user a selective access to a
subset of files, open the editor but close the DIR utility.

44..77..22 DDEELL:: DDeelleettee aa FFiillee
The screen prompts to enter the file number. In order to avoid unwanted deletion, the
message "CLR to DELETE" prompts for a second key depression. CLR deletes the file, ESC
returns to the menu "FILE UTILITIES" without deletion. An attempt to delete a protected file
introduces the Directory screen with the file status displayed.

44..77..33 CCOOPPYY:: FFiillee CCooppyy
The screen prompts to enter the SOURCE FILE number and then the DESTINATION FILE
number. Several action can take place:
• The source file is not open: no action, return to "FILE UTILITIES"
• The destination file is not open: a new file is created
• The destination file is already open: The destination file and the source file are

concatenated.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 22

• The memory space available is too small for the file to be copied: no action done, only the
screen warns the operator

TOO LARGE
 press any key

44..77..44 LLOOAADD:: LLooaadd tthhee FFllaasshh MMeemmoorryy iinnttoo tthhee RRAAMM
This operation is the reverse of the SAVE function, with two choice:
1. Restoring all the files
2. Restoring the configuration.

The LOAD destroys the RAM contents. Thus, a warning message is issued.

LOAD FLASH # 1.03 ?

YES NO

The identification code (1.03 in the example) is read out of the Flash. F4 returns to the base
menu, F3 starts the loading.

SUCCESSFUL LOADING
 press any key

or

FLASH NOT FORMATTED
 press any key

The last screen indicates a wrongly formatted Flash. Format is done during SAVE operation.

44..88 ""DDEEBBUUGGGGIINNGG"" UUttiilliittyy

44..88..11 ""TTRRAACCEE"" UUttiilliittyy
This utility makes sense during the execution of a program only. It shows the instruction
actually being executed. As UNIPROG has a multi-task executive, the task to be traced has to
be selected by F1. (F1 rotates the user's task number). The upper line of the screen shows the
instruction in the editor format. The lower line displays the task number, the line and the
program being traced, for example:

S: 1 L: 45 P: 12

means that the instruction being executed is in the simultaneous task 1 at line 45 of the
program 12.

44..88..22 ""II//OO"" CCoonnttrrooll UUttiilliittyy
This utility is intended to test and debug the hardware functions. The status of all UNIPROG
controlled inputs and outputs are made visible; the state of the outputs can be set by key
depressions. The output of the digital-to-analogue converter is also under control. For the
meaning and the numbering of the I/O, please refer to the table in section 5.3.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 23

The screen of the I/O Control menu displays one input, one output and the DAC value.

 3 23 on/off

F2 F3 F4F1

IN OUT DAC on/off

IN OUT DAC = 85 %

Figure 4-1 : I/O Utility

In the example above, the status of the input 3 is represented by the LED F10, the status of
the output 23 by the LED F9 and the DAC output is 85 % of its end-scale value (i.e 8.5 V with
the jumper in position a on the board.)
The F1, F2 and F3 keys move the cursor to IN, OUT and DAC. To select an input or an output,
place the cursor at the desired item and enter the number or the value. The F4 key toggles the
status of the selected output.

Notice, that this utility can be used while a program is running; this feature is a very practical
way to fix hardware or software fault, such as a missing acknowledge signal.

According to Table 5-1, the pseudo-I/O 8, 9, 10 are activation status of the simultaneous
tasks; the F4 key has no action on this items. The pseudo-I/O 11 to 15 are general purpose
flags and their IN and OUT status are equal.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 24

55 UUNNIIPPRROOGG IInnssttrruuccttiioonnss
The UNIPROG instructions are described using the mnemonics of the UNIPROG editor. The
numerical code needed to enter the instruction at the keypad is given in the description. In the
formal presentation below, the mnemonics are written in capitals, the arguments in lower case
characters.

Instructions and pseudo-instructions pertaining to the contouring functions are left to chapter
8.

An instruction or a numerical data occupies a line in the user's storage area. We shall call
"Line Address" or "Address" the number obtained by the concatenation of the decimal line
number and the decimal file number, the file number being written with two places.

Examples:
1245 is the address of line 12 in program 45,

102 is the address of line 1 in program 2,
6 is the address of line 0 in program 6,...

The symbol "LINE/PROG" in the editor is just another denomination for "address".

There are several ways an instruction fetches the numerical value of its main argument (the
displacement value in motion instructions, the duration in timing instructions, ...):
• The immediate argument: the numerical value itself is stored in the instruction.
• The direct argument: the instruction contains the address of the line where the value is

stored.
• The indirect argument: the instruction contains the address of a pointer, the pointer holds

the address of the numerical value.

For practical examples, see the instructions POSA, POSAD, POSAI,...

UNIPROG has a multi-task executive; 3 simultaneous programs may be running. Each
program has its own accumulator which serves as destination or source register in several
instructions.

55..11 PPoossiittiioonniinngg IInnssttrruuccttiioonnss
Six positioning instructions are available, 3 of them deal with "absolute" positioning, the other
effect "relative" motions. The argument of an absolute instruction is a coordinate value, the
argument of a relative instruction is a displacement value.

We have to point to an essential feature of UNIPROG: while effecting a relative motion,
UNIPROG computes the target position in the absolute coordinate system, thus, repeated
relative motions do not lead to an accumulation of rounding errors.

55..11..11 AAbbssoolluuttee PPoossiittiioonniinngg::
10 POSA <axis> <speed> <coordinate> <mode-e>
11 POSAD <axis> <speed> <address of the coordinate> <mode-e>
12 POSAI <axis> <speed> <pointer address> <mode-e>

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 25

55..11..22 RReellaattiivvee PPoossiittiioonniinngg::
14 POSR <axis> <speed> <displacement> <mode-e>
15 POSRD <axis> <speed> <address of displacement> <mode-e>
16 POSRI <axis> <speed> <pointer address> <mode-e>

"speed" argument: Integers 0..7 are legal. From 0 to 6, the velocity is taken from the table
(see § 4.6.2). If speed = 7, the velocity is supposed to be in the
accumulator.

"Mode-e" argument:
 Mode-e = 0: the motion is accounted for but not yet executed
 Mode-e = 1: all accounted motions for the designated axis are executed
 Mode-e = 2: all accounted motions in all axes are executed
 Mode-e = 3: generates a straight vector in the selected space, see chapter 8.

The various execution modes allow the programmer to add relative motions and then to effect
a single move. Of course, this does not work for absolute motions, as only the last entered
coordinate is significant.

55..11..33 TTooooll sseettttiinngg
19 TOOL <tool number>

The instruction “TOOL” sets a new reference valid for all subsequent positioning instructions.
The components of the translation vector of the origin are stored in the file " 0 " (see § 4.5.2).
The " TOOL" table allows consultation or modification of these origins. These origins can also
be memorized and validated directly from within the jogging.
The parameter "tool number" selects the group of 3 components associated with a tool
number.

55..22 OOtthheerr MMoottiioonn IInnssttrruuccttiioonnss

55..22..11 HHoommee PPoossiittiioonn SSeeaarrcchh::
17 REF <axis>

The home -or reference- position search is done as explained in section 3.1. The velocity is a
parameter in the configuration, see § 4.4.2.

55..22..22 CClloossuurree CChheecckk::
18 CLOS <axis> <speed>

The closure check function was explained in § 4.5.3. The "speed" argument has the same
meaning as in the positioning instructions.

55..22..33 TTeeaacchh--IInn IInnssttrruuccttiioonn::
13 TEACH <axis> <speed> <address>

The arguments "axis" and "speed" have been discussed under Positioning Instructions.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 26

The TEACH instruction makes it possible to enter -or to modify- a position by teaching. The
instruction comes to execution in the step-by-step mode only, see section 7.1. It is mandatory
to set the pause flag as explained in section 6.4.

When the program stops at the TEACH instruction, the screen shows:

TEACH-IN (+ - START)
Y 123.345

The lower line displays the axis and the contents of the line "address". There are two
possibilities to modify this contents:

• an effective motion of the axis by the JOG keys,
• entering corrections at the key pad.

Both methods can be used in the same teach-in session. The corrections are always added to
the contents of the line "address". This line can be the immediate, the direct or the indirect
argument of a positioning instruction or a data line.

With the JOG keys and the potentiometer, the position can be accurately taught. Several
motions are permitted. To resume the program execution, press START.

55..22..44 SSeettttiinngg ooff vvaarriiaabblleess::
83 SET <parameter number> <value of the parameter>

Parameter number:
0 PASSE value of the pass (PECK instruction).
1 GAP (PECK instruction)
2 DELAY ‘bottom of drilling’ delay (PECK instruction)
3 BRK-D delay before switching off the outputs (LAST DELAYED OUTPUT)

55..22..55 PPeecckk ccyyccllee ((ddrriilllliinngg))::
84 PECK <axis> <slow speed> <'bottom of drilling' position> <mode-d>

The instruction determines the number of passes. The 'bottom of drilling' position is absolute in
the selected tool area.

Four modes are possible:
Mode-d = 0: Pecking with return to the start position, at the end of the cycle.
Mode-d = 1: Chip-breaker with return to the start position, at the end of the cycle.
Mode-d = 2: Pecking without return.
Mode-d = 3: Chip-breaker without return.

The fast approach stops just before the material. This gap is set by to default to 0.1 mm and
can be changed with the instruction SET. A delay is observed at the bottom of the drilling in
modes 0 and 1. Its default value is 0.1 s, it can be changed with the instruction SET. The
modes 2 and 3 can be used to chain different drillings to have a progression.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 27

DRILLING DEPTH

PROGRAMMED POSITION START POSITION

DRILL GAP

1 DRILLING AT FEED

2 FAST BACKWARD

3 FAST FORWARD

4 DRILLING

5 FAST BACKWARD

1

2

34

5

Figure 5-1 : Peck Cycle

55..22..66 TTaappppiinngg iinnssttrruuccttiioonn::
81 TPING <axis> <pitch> <final tapping position>

This instruction determines the feed of the axis, in regard of spindle speed and pitch of thread.
The instruction SPVEL determines the spindle rotation speed controlled by a frequency
converter. The pitch must be given in the FEED table.

At the end of the tapping, the output number 7 is inverted, therefore it can be wired on the
input ‘direction’ of the frequency converter. The spindle rotation is reversed when the final
position is reached. The spindle rotation is not measured and therefore does not affect the
duration of the tapping. Consequently, the depth of the tapping can change in regard of the
torque.

Example:
00 POSA X 4 0.00 1
01 SPVEL 600 ; Spindle rotation speed
02 ON 7 ; Spindle rotation
03 ON 6 ; Start the spindle
04 TPING X 3 50 ; Start the tapping

Important note:
The feed is determined without a measure of the spindle speed, therefore a special tapping
tool with length compensation MUST be used.

55..22..77 RReeccttiilliinneeaarr DDiissppllaacceemmeenntt
46 CORR <speed>

The instruction CORR creates a rectilinear displacement and at a speed which is indicated at
the starting position of the contour by taking into account the radius of the tool and its
direction.

55..22..88 AAnnggllee
86 ANGLE <speed> <value> <mode-e>

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 28

The instruction ANGLE gives the angle in relation to the 0 fixed at three o’clock. A shift of the 0
is possible with the instruction ORGA. The positive direction is counter-clockwise. <Value> is
given in degrees.
mode-e = 0: the angle is recorded while waiting for the execution of the movement

with the instruction RADIUS.
Mode-e =1 or 2: the displacement on each axis is created each one at their respective

speed.

Mode-e = 3: the displacement is linear up to the next point.

55..22..99 RRaaddiiuuss
87 RADIUS <speed> <value> <mode-e>

The instruction RADIUS gives the radius in relation to the 0 fixed in relation to the center. The
radius is always positive.
Mode-e = 0: the radius is recorded while waiting for the execution of the movement

with the instruction ANGLE.
Mode-e= 1 or 2: the displacement on each axes is created each one at their respective

speed,
Mode-e = 3: the displacement is linear up to the next point.

55..22..1100 AAnngguullaarr SShhiifftt
88 ORGA <angular shift>

If the zero fixed at three o’clock is not appropriate, an angular shift is possible toward a
positive or negative direction.

55..22..1111 RReeffeerreennccee ffoorr aauuttoommaattiicc ttooooll aaddjjuussttmmeenntt
89 ZTOOL <axis> <input number> <direction>

This instruction is useful to take automatic tool origin (in case of tool wear and tear for
example).

This instruction allows memorizing in the accumulator the absolute position value on an axis
when a chosen input is active. This position value can be then treated and memorized in
another variable (for example FDATA from tool origin to modify).

To realize the tool origin movement this instruction uses speed parameters defined in the REF
menu of the axis.

Input number can be 0 to 7.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 29

Example:

We take an X-Y system, with automatic adjustment of Y tool origin during the cycle.

5 tools are defined:

0: machine origin
1: piece origin
2: origin for fast approach near the detector
3: current piece origin
4: detector origin

Tools 0, 1, 2 and 4 are adjusted only one time. Tool 3 is adjusted one time with the same
value as Tool 1 and is then by program modified during the cycle.

File 1

0 01 19 TOOL 3 ; Working with tool 3:
1 01 10 POSA X 0 0.0000 0 ; (example)
2 01 10 POSA Y 0 0.0000 2
3 01 19 TOOL 2 ; Automatic adjustment:
4 01 10 POSA X 0 0.0000 0 ; detector approach (tool 2)
5 01 10 POSA Y 0 0.0000 2
6 01 89 ZTOOL Y 2 0 ; Measure, position in accumulator
7 01 92 SUBD 2100 ; calculation: Difference with original detector value (tool 4)
8 01 91 ADDD 600 ; Addition of correction and piece origin (tool 1)
9 01 55 STORD 1600 ; memorization in current piece origin (tool 3)

10 01 60 JMP 1

55..33 IInnppuutt//OOuuttppuutt aanndd DDiissppllaayy IInnssttrruuccttiioonnss
These instructions allow the programmer to wait for an input, to branch conditionally upon an
input status and to set/reset an output.

55..33..11 WWaaiitt ffoorr aann IInnppuutt::
20 WAIT0 <input>
21 WAIT1 <input>

The program holds as long as the designated input is 0, resp. 1.

55..33..22 CCoonnddiittiioonnaall BBrraanncchh::
22 BRINO <input> <address>
23 BRIN1 <input> <address>

The program execution is transferred at "address" if the designated input is 0, resp. 1.
Otherwise, the program executes the next instruction. About the branch address, see the note
in section 5.6.

55..33..33 OOuuttppuutt CCoonnttrrooll::
28 OFF <output>

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 30

29 ON <output>

The designated output is set to 0 (OFF) or to 1 (ON).

Input Item Output Item
0 IN(0) 0 OUT(0)
1 IN(1) 1 OUT(1)
2 IN(2) 2 OUT(2)
3 IN(3) 3 OUT(3)
4 IN(4) 4 OUT(4)
5 IN(5) 5 OUT(5)
6 IN(6) 6 OUT(6)
7 IN(7) 7 OUT(7)
8 SIM(0) 8 SIM(0)
9 SIM(1) 9 SIM(1)
10 SIM(2) 10 SIM(2)
11 FLAG(0) 11 FLAG(0)
12 FLAG(1) 12 FLAG(1)
13 FLAG(2) 13 FLAG(2)
14 FLAG(3) 14 FLAG(3)
15 FLAG(4) 15 FLAG(4)

16..49 IN(16)..IN(49) 16..63 OUT(16)..OUT(63)
50..59 KEY("0".."9")

60 INA0
61 INB0
62 INA1
63 INB1

Table 5-1 : Inputs and Outputs

The inputs IN(0..7) are dedicated as home switches, but they are general purpose in nature,
thus, they can be tested by the WAIT and BRIN instructions.
The pseudo-I/O SIM0, SIM1, SIM2 are the activation status of the simultaneous UNIPROG
tasks.

FLAG(1..5) are general purpose flags, which can be set/reset by ON/OFF and tested by WAIT
and BRIN.

IN(50..59) are the state of the numerical keys 0 to 9.

IN(16..49) and OUT(16..63) are implemented by the I/O extension modules. Each module
must be given an address by the switch setting of Table 5-2.
One input and one output module may have the same address.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 31

Switch Setting
4 3 2 1

Address IN OUT

O O C O 16...23

O O C C 24...31

O C O O 32...39

O C O C 40...47

O C C O 48...55

O C C C 56...63

Table 5-2 : I/O Module addresses

OUT(0) à OUT(7) are outputs implemented within the basic E-300 housing. They are available
through the back panel connector.

55..33..44 CCoommpplleemmeenntt ooff oouuttppuutt::
95 CPL <output number>

This instruction inverts the output state.

55..33..55 DDiissppllaayy ooff aa vvaalluuee
79 DISPD <position><pointer address>

<position> is a number between 0 and 3 which gives the area where to display the value:

0 = Upper left corner

1 = Upper right corner

2 = lower left corner

3 = lower right corner

<pointer address> contains the address where is the value to be displayed. (IDATA or FDATA)

80 RBW

This instruction restore the window which were displayed before DISPD.

55..44 NNuummbbeerr HHaannddlliinngg
UNIPROG works either with real -or floating- numbers and with integers. Velocities, positions,
displacements, times are floating numbers while addresses and a number of cycles are
integers.

With a few exceptions, the arithmetic and data handling instructions work with real numbers. A
line holding an instruction with an immediate argument can be the source or the destination of
an instruction dealing with real numbers. Thus, the program is able to modify itself.

O = Open,
C = Closed

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 32

55..44..11 LLooaadd AAccccuummuullaattoorr
Load Accumulator Immediate:
50 FLOAD <floating number>
51 ILOAD <integer>

Load Accumulator Direct:
52 LOADD <address>

Load Accumulator Indirect:
53 LOADI <pointer address>

55..44..22 SSttoorree AAccccuummuullaattoorr
Store Accumulator Direct:
55 STORD <address>

Store Accumulator Indirect:
56 STORI <pointer address>

55..44..33 PPooiinntteerr IInnccrreemmeennttaattiioonn//DDeeccrreemmeennttaattiioonn ::
58 INCD <address>
59 DECD <address>

These instructions are used with the indirect addressing: they move the pointer to the next
(INCD) or to the previous (DECD) line. INCD adds 100 to the composite address contained in
the pointer. The file part of the composite address remains unchanged.

55..44..44 SSaavvee aa VVaarriiaabbllee iinnttoo tthhee FFllaasshh MMeemmoorryy::
54 SAVE <address>

The variable in line "address" is saved in the Flash memory at the same address. The write
operation to the Flash memory may last for several tenths of a second, therefore this
instruction is not recommended in portions of programs where timing is critical.

55..44..55 LLooaadd tthhee DDiiggiittaall--ttoo--AAnnaalloogguuee CCoonnvveerrtteerr ((DDAACC))::
57 SPVEL <rotations per minute>

The parameter determines the speed of the unit connected to the DAC. The parameter ‘MAX
RPM 10 volts’ in the configuration must be set (for example the value 100 permits to give the
speed in percentages).

55..44..66 FFrreeqquueennccyy CCoonnvveerrtteerr ccoonnttrrooll::
85 MOTOR <motor number> <rotation speed>

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 33

This instruction controls the spindle motors by ensuring necessary delays in order to change
the frequency converter contactors. The frequency converter must absolutely be changed
without current and therefore at a speed of zero. The MOTOR instruction cycle sets the speed
to zero then waits the delay set in the SET 4 BRK-D instruction before reactivating the speed
(in rotation per minute).

With motor number 0, all motors are stopped.
With motor number 1, motor number 2 is stopped and motor 1 starts.
With motor number 2, motor 1 stops, motor 2 starts.
etc... to motor number 7.

55..55 PPrrooggrraamm CCoonnttrrooll IInnssttrruuccttiioonnss

55..55..11 UUnnccoonnddiittiioonnaall JJuummpp::
60 JMP <address>

The program execution is unconditionally transferred at the line ‘address’.

Important Notice: The UNIPROG editor has an insert/delete line function, and deletion
alter the numbering of the lines in a file. To avoid line referencing
problems, it is recommended, but not mandatory, to organize the
program files in order to jump or call only at line 0.

55..55..22 SSuubbrroouuttiinnee CCaallll::
61 CALL <address>

The program execution is transferred at "address", the beginning of the subroutine. At the end
of the subroutine, execution resumes at the main program at the line just after the Call. Up to
10 nesting levels of subroutines are allowed.

55..55..33 PPrrooggrraamm EEnndd,, SSuubbrroouuttiinnee EEnndd::
62 END

At the end of a main program, this instruction transfers the control to the operating system. At
the end of a subroutine, END has the function of a Return. If the last instruction of a program
or a subroutine is also the last line of the file, no END instruction is required.

55..55..44 RReeppeeaatt LLoooopp::
The instructions in this section are intended to built repeat loops without any overhead. Up to
10 loops can be nested and a loop can extend over several files. A loop begins at the REP or
REPD instruction and ends with a ENDRP instruction. The argument of REP must be an
integer (number of loops); with REPD, the contents of the designated line may be an integer or
a real. In the later case, the decimal fraction is discarded.

63 REP <integer> immediate argument
64 REPD <address> direct argument, integer in "address"
65 ENDRP end of the loop

55..55..55 SSiimmuullttaanneeoouuss TTaasskk AAccttiivvaattiioonn::
67 SIM1 <address>
68 SIM2 <address>

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 34

The simultaneous Task #1 or #2 starts execution at "address".

A simultaneous task is terminated when it encounters a END instruction or the end of the file.
A simultaneous task can be paused by switching the control flag SIM1 (SIM2) off; the paused
task resumes its operation when the SIM flag is again switched on. The SIM flags can be
tested to gain information about the activity status of the tasks. Calling an already active task
at another address transfers the control of the task to the new address. The STOP key abort
all active tasks.

55..55..66 CCoonnddiittiioonnaall BBrraanncchh oonn AAccccuummuullaattoorr CCoonntteennttss::
These instructions are intended to test the result of an arithmetic instruction. If the condition
meets, the program control is transferred to "address", if the condition does not meet, the
program continues in sequence. Refer to the notice in section 5.5.1.

24 BRM <address> Branch if the contents of the accu. is negative
25 BRP <address> Branch if the contents of the accu. is positive or zero

26 BRZ <address> Branch if the contents of the accu. is zero
27 BRNZ <address> Branch if the contents of the accu. is non zero

55..66 TTiimmiinngg IInnssttrruuccttiioonnss
70 WAIT <time> Immediate Argument
71 WAITD <address> Direct Argument, time is in "address"

These instructions are dead timers. The time is given in seconds and the line addressed by
WAITD must contain a real number.

55..77 AArriitthhmmeettiicc IInnssttrruuccttiioonnss
One operand is the contents of the accumulator, the other operand is the contents of the direct
argument. The result returns to the accumulator.
If the direct argument is a line opened by an IDATA, integer operands are assumed. In all
other cases, floating numbers are assumed.

91 ADD <address> Accu = Accu + [address]
92 SUBD <address> Accu = Accu - [address]
93 MULD <address> Accu = Accu . [address]
94 DIVD <address> Accu = Accu / [address]

55..88 NNOOPP aanndd DDiirreeccttiivveess
90 NOP

The NOP (No Operation) instruction does nothing. It is useful to reserve space in a program
for future modifications. While editing, a line not yet opened appears as a NOP.

98 FDATA <floating number>
99 IDATA <integer>

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 35

FDATA and IDATA are not true instructions but directives to declare numerical variables. The
arithmetic instructions are directed by the declaration.

It is worthwhile to notice that the directives 98 and 99 act as NOP when written in a program.
Thus, it possible to declare numerical variables anywhere in a program.

55..99 PPaauussee FFllaagg
A Pause Flag can be set at any instruction in a program. The pause flag has no action if the
program runs in mode 1, but the program will pause at each flag in mode 2. For more details,
see chapter 7.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 36

66 TThhee UUNNIIPPRROOGG EEddiittoorr
The editor is entered through the "PROGRAMMING" menu, as mentioned in section 4.6. The
screen prompts the operator to enter the file number to be edited. The contents of the line 0 of
the selected file comes to the screen.

POSA X 3 12.234 0
10 0 p11

The upper line displays the instruction mnemonics and the value of its arguments, if any. The
lower line gives the numerical code of the instruction (just under the mnemonics) and the line
and file number. The cursor is blinking on the instruction name.

If the selected file is not yet open, a NOP instruction appears and the file will be opened as a
significant instruction is entered.

66..11 HHooww ttoo RReeaadd aa PPrrooggrraamm ??
Arrow Keys: ‘UP’ goes to the previous line, ‘DOWN’ goes to the next line.

F2 Key: Enter the line number to go to the line you want to examine

ESC Key: Returns to the editor prompt menu; a new file can be selected. A second
depression of ESC is needed to return to the base menu.

66..22 HHooww ttoo MMooddiiffyy tthhee CCoonntteennttss ooff aa PPrrooggrraamm LLiinnee ??
Writing a new line in a program amounts to modify a line containing a NOP. Thus, it is
sufficient to know how to modify a line.

ENTER Key: Moves the cursor to the next argument at right. The lower line informs the
operator about the argument to be entered. After the last argument -or after
the instruction itself if it does not require an argument- the whole line is
stored and the next line is put on the screen.

CLR Key: Moves the cursor to the argument at left. Useful to correct an erroneous
entry.

F5 Key: If the cursor stays at the instruction symbol or at a symbolic argument, the
F5 key presents all possible choices in sequence (in increasing numerical
order). F5 has no action when the cursor points to a numerical argument.

To enter an instruction, it is not necessary to use the F5 key to scan all possible entries. It is
faster to directly enter the numerical code. With same practice, the codes are easily
memorized, at least the class to which it belongs. For example: positioning instruction: class
10, data handling: class 50, timing: class 70,.. A few depressions of F5 will then get the
desired symbol. Please notice that no ENTER key is needed to enter the numerical code of an
instruction, the number is automatically entered after two figures. It is then necessary to use
the CLR key to place the cursor.

It is always possible to examine (with the arrow keys) the other lines while in the process of
modifying an instruction.

Example: Enter the POSR instruction into an empty line:

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 37

• POSR code is 11. Enter 11 (ENT key not required). The POSR symbol is displayed in the
upper line.

• The display now prompts the operator to select the axis, the selection can be dona with F5
or directly by entering 0 for X, 1 for Y.

• ENTER introduces the next argument: the speed (SEL.SPEED). Enter a decimal number
0..7. F5 can't be used here. The next argument is the displacement (DISP'MENT) , which
must entered in engineering units.

• The last argument is the execution mode (EXEC MODE), F5 is active, but the direct entry
is faster: 0, no immediate execution, 1, the designated axis moves, 2, all instructed axes
move, 3, vector generation. ENTER stores the line and put the next line to the screen.

To modify a single argument in an instruction, put the cursor on the argument and enter the
new value. Then depress ENTER several times until the line is stored (next line displayed).

66..33 HHooww ttoo IInnsseerrtt aanndd DDeelleettee aa LLiinnee ??
The F3 key inserts a line at the displayed line number.

Example: The line 12 is at the screen and its contents is the instruction WAIT. After an
insertion, the line 12 contains a NOP and the Wait instruction occupies the line
13.

The F4 key deletes the displayed line. The next line takes the number of the deleted line and
comes to the screen.

66..44 HHooww ttoo sseett aa PPaauussee FFllaagg ??
The Pause Flag is set or reset by the F1 key (toggle action). The LED of the F1 key displays
the presence of the flag. The pause flag is effectively stored while storing the line to which it
belongs. i.e. if the editor goes to the next line upon depression of ENTER (The arrow keys do
not store a line !).

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 38

77 PPrrooggrraammmmee EExxeeccuuttiioonn
The program execution is governed by the push buttons START and STOP, by the inputs
designated in the CTRL configuration and by the execution mode selected in the menu
MODE.

77..11 TThhee EExxeeccuuttiioonn MMooddeess,, mmeennuu ‘‘mmooddee’’
MOD1 (F2):
Normal execution mode. The Pause Flags in the instructions are ignored. The START button
is lit when the program is running.

MOD2 (F3):
The Pause Flags stops the program before the execution of the flagged instruction. The
simultaneous tasks go on unless a flagged instruction is encountered.
During the pause, the START LED is blinking. A depression of START restart the program till
the next flagged instruction. This mode is especially useful with the TRACE utility.

SAT (F1):
In this mode, the displacement speed is limited, but the pause flags are treated as in mode 2.

77..22 SSTTAARRTT aanndd SSTTOOPP KKeeyy FFuunnccttiioonnss
Remember that the inputs designated by the CTRL configuration are effectively ORed with this
push buttons.

START
When the pilot lights in the START and STOP buttons are off, a depression of START
effectively starts the program designated as "START PROGRAMME" by the VECT menu. If
the red STOP light is on, the program designated as "POWER ON PROGRAMME" comes to
execution.

PAUSE (MAN)
The MAN (F4) key pauses the running program at the end of the current instruction. However,
a motion is immediately stopped to zero-velocity by the normal ramp-down process, i.e. the
true position is preserved. The START button is blinking and the ‘MAN’ is displayed over F4
key. To resume execution, press START again.

STOP
A first depression of STOP while a program is running immediately stops the execution. The
current motions are ramped to 0-velocity, the outputs and the DAC are reset. The true
positions of the axis are preserved. Execution may be resumed by depressing START. The
first depression of STOP has the same action as the MAN key. A second depression aborts
the current program. The pilot light of STOP is on and the program which will come to
execution when depressing START is the "POWER ON PROGRAMME".

After switching the controller on, the mode is MOD1 and the POWER ON PROGRAMME is
automatically executed. If a power on program is not wanted, enter 100 as power on vector.

Note:
Most utilities are available while a program is running. However, the editor should be used with
care: a line insertion or deletion will move the portion of the user's memory above the current
line. Catastrophic failures may result.

77..33 FFaauulltt PPrroocceessssiinngg
Two fault situations are processed by UNIPROG:
1. The fault generated within the motor drivers,

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 39

2. The over-travel as detected by software limits, (only in contouring mode, in positioning and
vector modes, the travel is a priori limited)

When a fault situation arises, UNIPROG immediately stops all motions, all outputs and the
DAC. The screen shows one of the messages:

AXIS a fault

press STOP

STROKE a TOO LARGE

press STOP

where "a" stands for the axis, X, Y.

Depressing STOP resets, the screen shows:

AXIS a FAULT
JOGGING +/- -> ESC

The faulty axis can be moved slowly with the JOG keys. This is useful when the driver is fitted
with hard-wired limit switches. The ESC key then returns the controller to the normal status. If
the fault remains, some thing must be wrong with the driver.

In any case the controller executes the POWER ON PROGRAMME after a recovery from a
fault situation.

CAUTION:
The red STOP button is by no means an emergency stop as required by the regulations.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 40

88 VVeeccttoorr GGeenneerraattiioonn aanndd CCoonnttoouurriinngg

88..11 FFeeaattuurreess aanndd SSppaaccee DDeeffiinniittiioonn
The E-300 Series Controllers are able to generate vectors in X and Y dimensions. Contouring
pathes are obtained through the generation of small straight segments. The basic PINX-E
language allows the programming of pathes of any shape in Cartesian, polar or cylindrical
coordinate systems.

UNIPROG has a set of instruction to generate straight and circular pathes in Cartesian
coordinates. The programming task is then a lot easier.

The programmer has to make the difference in generating a single straight vector or
generating a continuous path composed of several straight and circular segments. A single
vector is produced whenever a positioning instruction is written with the execution mode 3 (3 =
/). The geometry of a continuous path must be defined with pseudo-instructions outside the
executable program.

While generating a vector or a continuous path, the velocity is controlled along the path
ordinate. The path ordinate plays the role of virtual axis whose parameters are derived from
the involved axes.

A path with abrupt changes of direction induces discontinuities in the velocity of the axes. The
step motors will not necessarily be able to follow the path at any speed.

88..22 VVeeccttoorr GGeenneerraattiioonn
40 ORGP <axis> <absolute position>

The instruction ORGP (ORiGin Path) sets the reference of the contour and must follow the
instruction DPATH. If the reference of the contour is located at the starting point, the
instruction ORGP is unnecessary.

30 DPATH <space> <tool left-right>

The instruction DPATH (Define PATH) determines the plane in which the contour will be
created. The parameter left-right (LR) indicates toward which side the correction of the tool
trajectory should go.
• This instruction must imperatively appear in the first line of the contour file.
• The designated space is active until a new DPATH instruction is encountered.
• A vector motion requires the mode 3 in the POSA/POSR instructions.

Three important points must be emphasized:
a) That latent motions (set-up with POSR with mode 0) will be executed, even on axes outside

the defined space.
b) The home (reference) position must be done on all axes prior to any vector generation in

mode 3.
c) The travel will be automatically limited to the value "STROKE", see section 4.4.1.

88..33 PPrrooggrraammmmiinngg tthhee GGeeoommeettrryy ooff aa CCoonnttiinnuuoouuss PPaatthh
A continuous path is a concatenation of straight, and circular segments executed as single
move at a constant path velocity. The description of the geometry of the path is written in a file
outside the executable program. A geometry file can hold several pathes. The limited

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 41

computing power of the E-300 controller is overcome by a pre-interpretation of the geometry.
The programmer has to instruct the path interpretation as described in section 8.4.

A path is defined in its own coordinate system, without any relation to the coordinate systems
of chapter 3. The starting point of a path is the origin of the coordinates. While executing the
path motion, the path starts at the actual axis position. Thus, geometry file can be "re-used" at
several positions.

The pseudo-instruction DPATH is mandatory at the beginning of a geometric path definition.
(DPATH is also an executable instruction, refer to section 8.2). When several pathes are
described in a single file, they are separated by the DPATH pseudo-instruction. The END
directive must be used only at the very end of the geometry file.

88..33..11 DDeeffiinniittiioonn ooff aa SSttrraaiigghhtt SSeeggmmeenntt
32 LINA <axis> <coordinate> <mode-e>
33 LINR <axis> <component> <mode-e>

The pseudo-instructions LINA and LINR behave similarly to the instructions POSA and POSR,
"mode-e" parameter has the same meaning as in these last instructions (see chapter 5.1.2).
The concepts of the absolute coordinate and relative displacement refer to the space of the
contour, in Figure 8-1. and not to the reference in chapter 3. A pseudo-instruction is required
for each component of the vector which can be given in an unspecified order. The last pseudo-
instruction must be in mode 2.

The coordinates or the components are naturally given in the unit defined by SCALEK. Mode 0
applies to all the components except the last one, which must be in mode 2.

If one of the vector’s coordinates or one of its components has not been specified, the last-
mentioned axis is taken into account. This characteristic allows easier and more concise
programming of the tabulated functions as shown in the following example. This simplification
no longer functions after programming an arc of a circle nor after the instruction POINT.

The instructions LINA and LINR must always follow the instructions POINT see (POINT).

DPATH XY L
LINA X 3 0
LINA Y 2 2 ; seg. 1
LINA X 5 2 ; seg. 2
LINA X 6 0
LINA Y 3 2 ; seg. 3
LINA Y 5 2 ; seg. 4
.....
.....

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 42

Y

X

1

2
3

4

1 2 3 4 5 6 7

1

2

3

4

5

Figure 8-1 : Contour with zero diameter

If a diameter of the tool correction is required, it is necessary to use the instruction POINT with
an arc of zero radius (RAD = 0), instead of the instructions LINA or LINR.

DPATH XY L
POINT X 3 0
POINT Y 2 2 ; seg. 1
POINT X 5 2 ; seg. 2
POINT X 6 0
POINT Y 3 2 ; seg. 3
POINT Y 5 2 ; seg. 4
.....
.....

42 POINT <axis> <absolute position of the angle> <mode-e>

The instruction POINT makes it possible to mark the coordinates of the angle in which will be
stored the radius of the rounding determined by the instruction RAD.

The coordinates of the summits are given in the reference of the contour, i.e. in relation to an
unspecified point of the surface of the contour. In the case of a figure representing central
symmetry, the coordinates will be given, naturally, with respect to the center.

In a contour defined by several POINT instructions, it is not necessary to recall the last
coordinate if it is identical.

To complete a contour defined by the POINT instructions, the file must be terminated by the
instruction LINA or LINR. The 2 coordinates of the surface must be recalled to terminate the
contour.

88..33..22 DDeeffiinniittiioonn ooff aa CCiirrccuullaarr SSeeggmmeenntt
A polygonal approximation is used to generate a circular segment. The angular definition of
this approximation is given by the pseudo-instruction CDEF (Circular Definition). CDEF is a
modal directive, i.e. the angular definition is valid until changed by a new CDEF.

35 CDEF <maximum arrow (tolerance)>

The instruction CDEF determines the angle of segmentation to obtain the maximum
acceptable deviation of a segment for each subsequent circle.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 43

ARROW
ALPHA

34 RAD <mode-r> <radius>

"mode-r" parameter of the instruction RAD (see Figure 8-2), associated with instructions CIRR
and CIRA, determines on which plane the circle must be created and with which radius.
However this instruction becomes unnecessary if the circle follows another circle or a straight
line. The program UNIPROG+ can automatically generate the radius and the mode while
respecting the contour without angular points.

The instruction RAD associated with the instructions POINT makes it possible to generate the
radius of the rounding. In this case the mode is unnecessary.

If the radius is identical, it is not necessary to recall it for subsequent circles.

A circle’s arc is determined by the following elements:
• components of the cord under-drawn by the arc or the coordinates at the end of the arc,
• the radius of the circle,
• the mode specifying one of the 4 possible solutions, see Figure 8-2.

Figure 8-2 : Rotation Modes

The radius and the mode are compulsory on the first arc of the circle. For the following
calculations, they become optional in the case of a contour without angular points. In fact,
UNIPROG+ is able to determine the radius automatically.

36 CIRA <axis> <coordinate> <mode-e>
37 CIRR <axis> <component> <mode-e>

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 44

The pseudo-instructions CIRA and CIRR behave like LINA and LINR. If several arcs of the
circle in the same contour have the same radius and the same mode, the pseudo-instruction
RAD can be written only once. CDEF and RAD must precede CIRA/CIRR.

As an example, let us give two ways of coding of the contour of Figure 8-3.
DPATH XY L DPATH XY L
LINA X 3 0 LINR X 3 0
LINA Y 2 2 LINR Y 2 2
RAD 3 2.5 RAD 3 2.5 ;optional
CIRA X 4 0 CIRR X 1 0
CIRA Y 4 2 CIRR Y 2 2
RAD 0 5 RAD 0 5 ;optional
CIRA X 6 0 CIRR X 2 0
CIRA Y 7 2 CIRR Y 3 2
END END

A

B

r 2.5
r 5

Y

X
1 2 3 4 5 6 7

7

6

5

4

3

2

1

Figure 8-3 : Contour Example

88..44 IInntteerrpprreettaattiioonn ooff tthhee GGeeoommeettrriicc FFiilleess
As already mentioned, the geometric files must be computed prior to execution. The
instruction PCOMP generates for each path a buffer of numerical data to be used in real time
by the motion generators. This operation is rather time consuming, thus it must be done only
once at power-up or during idle time.

Two situations may arise:
• There is enough space available in the memory to store all the buffers used by the

program. The PCOMP instructions will all be located in the POWER ON PROGRAMME. A
path computation takes place after switching on or after a full stop by two depression of
the STOP button.

• The available space in memory is too small; it is then necessary to organize the
computation in such a way that the results will be available early enough and that the
computation time will not be noticed. PCOMP writes its results on a rotary buffer; thus,
care must be exercised not to overwrite valuable data. Please, consult E.I.P.SA to solve
specific problems related to PCOMP.

31 PCOMP <file>

The argument "file" is the file number where the geometric definition is stored. If there are
several pathes separated by DPATH directives, the interpretation goes till the end of the file

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 45

47 TOOLP <tool number> <number of the contour file>

The instruction TOOLP sets a new reference and loads the contour file associated with this
tool for all the instructions of positioning and subsequent contouring. The components of the
translation vector of the origin are stored in file "0".
• The " TOOL " table can allow consultation or modification of these origins as well as the

diameter of the associated tool.
• These origins can also be memorized and validated directly from the jogging.
• The parameter " tool number " selects the group of the 4 components associated with a

tool number.
• When the program executes the instruction TOOLP, the red LED “STOP” blinks indicating

that the contour file is being calculated. The contour file is not recalculated as long as it is
not modified.

• The contour uses the tool number to determine the radius of the correction of the tool
trajectory.

• The radius is stored in the table " TOOL ".

88..55 EExxeeccuuttiioonn ooff aa PPaatthh
48 PATH <speed>

The file containing path dates was loaded by the last TOOLP instruction.

If the instruction PATH is directly followed by the WAITP instruction then the contour starts
without waiting for the end of the latter instruction. To avoid execution of disordered
sequences of movement, the rest of the program must imperatively contain the parameter
indicating the end of the contour (instruction 66 ENDP), before any other new movement can
be begun.

66 ENDP

Parameter for the end of a contour (END Path) to be used imperatively when the instruction
PATH is directly followed by the instruction WAITP.

82 WAITP <axis> <speed> <position> <mode-w>

Waits if the absolute position of the concerned axis is smaller or larger according to the mode.

Mode-w = 0 Waits as long as the absolute position is smaller than the value of the
programmed position.

Mode-w = 1 Waits as long as the absolute position is larger than the value of the
programmed position.

• The programmed position takes into account the origin of the tool but not the origin of the
contour file.

• This instruction is placed directly after the instruction PATH, without this condition the
contour is executed until the end.

• The reaction time of this instruction depends on the number of simultaneous functions
active in the command.

• If the programmed position is not reached the program must be stopped with the STOP
key.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 46

Waiting position

Negative direction Positive direction

Mode 0 Mode 1 Mode 0 Mode 1

Figure 8-4 : Waiting position according to the displacement direction

88..66 CCaassee nnoott aacccceeppttiinngg tthhee ccoorrrreeccttiioonn ooff tthhee TTooooll
UNIPROG+ does not solve all cases of contournage, in particular when discontinuities or
summits appear in the contour.
To solve these cases, it is necessary to create a linear tangent segment with the arc (minimum
length of 0.02 mm).

For example a straight line cutting an arc or 2 non-tangent arcs.

88..77 DDiissppllaayy ooff tthhee CCoonnttoouurr EErrrroorrss
During the pass of the calculation of the contour numbered ERRORS can appear in the case
of erroneous data. These errors stop the calculation.

Error 0: The radius is negative.
Error 1: The contour is impossible. The coordinates at end of the arc (CIRR CIRA) are

beyond the radius. The radius is negative.
Error 2: Division by 0 during the use of the instruction POINT. The radius is negative.
Error 3: Division by 0 during the automatic generation of a tangent arc to another arc.
Error 4: Inaccuracy in the calculation of the angle.
Error 5: Inaccuracy in the calculation of the center.
Error 6: The determination of the departure point of the contour is impossible. The first

segment (LIN) has to measure more than 0.01 mm.
Error 7: Instructions LINR or LINA should not precede the instruction POINT.
Error 8: 2 linear segments follow on the same axis (LINR, LINA). The contour can have a

discontinuity. This case is only accepted when the radius of the tool is zero. The
use of the instruction POINT with a zero radius can compensate for this
disadvantage.

Error 9: Division by 0, the contour is impossible, the coordinates of the circle are beyond
the radius.

Error 10: The instruction RAD is missing. In concrete terms, determining the radius is
impossible when the contour starts with a circle.

Error 11: The coordinates at the end of the arc conflict with those at the point of departure.
Error 12: The generation of the rounding is impossible, the 3 co-ordinates forming the

angle of the polygon are aligned, consequently the radius is infinite.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 47

Error 13: There is no contour file available.
Error 14: The instruction DPATH is missing in the first line of the contour file.
Error 15: At the time of execution, the deposit of the contour (BUFFER) is outside of the

memory zone. A false manipulation has modified the first line of the contour file.
Error 17: The instructions POINT do not follow the instructions LINA or LINR.

RAYON < 1: The contour presents at least a radius smaller than 1 mm. Consequently the
execution speed of the contour will have to be adapted to run the radius.

NULL SEGMENTATION: The arc is so short that the segments to the right cannot be
reached. It therefore generates a straight line on the
coordinates of the end of the arc.

88..88 EExxaammpplleess

" TOOL " tables

ORIGIN X TOOL 0 ?
ORIGIN Y TOOL 0 ?
DIAMETER TOOL 0 ?

ORIGIN X TOOL 1 13
ORIGIN Y TOOL 1 54
DIAMETER TOOL 1 8

File 1
0 01 47 TOOLP 1 23 ;Charges the origin of tool 1 of contour file 23

;Origin X 13 and Y 54, tool diameter 8 mm taken from the table TOOL
1 01 46 CORR 2 ;Places the tool on the corrected contour, speed 2
2 01 48 PATH 1 ;Executes contour 23 loaded by TOOLP, speed 1
3 01 * 10 POSA X 0 50.0000 0
4 01 10 POSA Y 0 50.0000 2 ;frees the tool, speed 0

File 23 sub program contour
0 23 30 DPATH XY L ;Defines the XY space and the correction to the left " L "
1 23 40 ORGP X -1.0000 ;Begins the contour in recess from X of 1 mm
2 23 35 CDEF 0.01 acceptable error on the arc 0.01 mm
3 23 42 POINT X 20.0000 0
4 23 34 RAD ? 0.0000 ;Radius of rounding is zero, mode not necessary
5 23 42 POINT Y 0.0000 2 ;1st point, angular
6 23 32 LINA X 50.5000 0
7 23 32 LINA Y 8.4580 2 ;2nd point, tangent with the arc
8 23 36 CIRA X 60.0000 0
9 23 36 CIRA Y 21.0000 2 ;3rd point, end of the arc, automatic generation of the arc radius
10 23 33 LINR X 0.0000 0
11 23 32 LINR Y 4.0000 2 ;4th point, tangent with the arc
12 23 37 CIRR X 21.100 0
13 23 36 CIRA Y 35.9030 2 ;5th point, end of the arc, automatic generation of the arc radius
14 23 42 POINT X 0.0000 0
15 23 34 RAD ? 3.0000 ;Radius of the rounding 3 mm, mode not necessary
16 23 42 POINT Y 10.0000 2 ;6th point angle of the rounding
17 23 32 LINA X 0.0000 0
18 23 32 LINA Y -2.0000 2 ;7th point, end of the contour in recess from Y of 2 mm

7

6

5

4
3

2

1

R …

R …

R3

38
4

21
8.458

35.903

10

60

50.5
20

20.1

X+

Y+

Milling
Tool

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 48

88..99 SSuummmmaarryy ooff CCoonnttoouurriinngg IInnssttrruuccttiioonnss aanndd PPsseeuuddoo--IInnssttrruuccttiioonnss

Code Instruction 1st arg. 2nd arg. 3rd arg. 4th arg. Description
35 CDEF Max. arrow Define segmentation value
36 CIRA Axis Coordinate Mode-e Define absolute circular mvt
37 CIRR Axis Component Mode-e Define relative circular mvt
30 DPATH Space Tool L-R Define working Plan
66 ENDP End of path
32 LINA Axis Coordinate Mode-e Define absolute straight segm.
33 LINR Axis Component Mode-e Define relative straight segm.
40 ORGP Axis Abs. Pos. Set Path origin
48 PATH Speed Path execution
31 PCOMP File number Geometric file interpretation
42 POINT Axis Angle pos. Mode-e Segm. bounded with rounding
34 RAD Mode-r Radius Define radius and rotation dir.
47 TOOLP Tool Nr File Nr Geometric file interpretation
82 WAITP Axis Speed position Mode-w Waiting reaching a position

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 49

99 UUNNIIPPRROOGG RReeccaappiittuullaattiioonn

99..11 IInnssttrruuccttiioonnss::
Code Instruction 1st arg. 2nd arg. 3rd arg. 4th arg. Description Page

91 ADD address Add to Accu Direct 34
86 ANGLE Speed Value Mode-e Displ. angle (polar coordinate) 27
22 BRIN0 input address Branch if Input is False 29
23 BRIN1 input address Branch if Input is True 29
24 BRM address Branch if Accu is <0 34
27 BRNZ address Branch if Accu is non zero 34
25 BRP address Branch if Accu is >=0 34
26 BRZ address Branch if Accu is zero 34
61 CALL address Sub-Routine Call 33
35 CDEF Max. arrow Define segmentation value 42
36 CIRA Axis Coordinate Mode-e Define absolute circular mvt 43
37 CIRR Axis Component Mode-e Define relative circular mvt 43
18 CLOS axis speed Closure Check 25
46 CORR Speed Rectilinear displacement 27
95 CPL Output Nr Output state complement 31
59 DECD address Decrement Address Direct 32
79 DISPD Position Address Display a value 31
94 DIVD address Divide Accu Direct 34
30 DPATH Space Tool L-R Define working Plan 40
62 END End of Prog. and Routines 33
66 ENDP End of path 45
65 ENDRP End of Repeat Loop 33
98 FDATA floating Define a Floating Number 34
50 FLOAD number Load Accum Immed.,Floating 32
99 IDATA integer Define an Integer Number 34
51 ILOAD integer Load Accum Immed.,Integer 32
58 INCD address Increment Address Direct 32
60 JMP address Unconditional Jump 33
32 LINA Axis Coordinate Mode-e Define absolute straight segm. 41
33 LINR Axis Component Mode-e Define relative straight segm. 41
52 LOADD address Load Accum Direct 32
53 LOADI pointer Load Accum Indirect 32
85 MOTOR Motor Nr Rot. Speed Motor rotation speed 32
93 MULD address Multiply Accu Direct 34
90 NOP No Operation 34
28 OFF output Set Output to 0 29
29 ON output Set Output to 1 30
88 ORGA Angul. shift Angular shift of reference axis 28
40 ORGP Axis Abs. Pos. Set Path origin 40
48 PATH Speed Path execution 45
31 PCOMP File number Geometric file interpretation 44
84 PECK Axis Slow speed Drill pos. Mode-d Peck cycle (drilling) 26
42 POINT Axis Angle pos. Mode-e Segm. bounded with rounding 42

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 50

Code Instruction 1st arg. 2nd arg. 3rd arg. 4th arg. Description Page
10 POSA axis speed coordinate Mode-e Absolute Indexing,Immed. 24
11 POSAD axis speed address Mode-e Absolute Indexing,Direct 24
12 POSAI axis speed pointer Mode-e Absolute Index. Indirect 24
14 POSR axis speed disp'ent Mode-e Relative Indexing,Immed. 25
15 POSRD axis speed address Mode-e Relative Indexing,Direct 25
16 POSRI axis speed pointer Mode-e RelativeIndex. Indirect 25
34 RAD Mode-r Radius Define radius and rotation dir. 43
87 RADIUS Speed Value Mode-e Displ'mt. radius (polar coordinate) 28
90 RBW Restore basic window 31
17 REF axis Reference Point 25
63 REP n times Repeat, Immediate n 33
64 REPD address Repeat, Direct n 33
54 SAVE address Save to EEPROM 32
83 SET Param. Nr Param. Val. Setting of variables 26
67 SIM1 address 1st Simultan. Prog. Call 33
68 SIM2 address 2nd Simultan. Prog. Call 33
57 SPVEL Rot/min Spindle speed 32
55 STORD address Store Accum Direct 32
56 STORI pointer Store Accum Indirect 32
92 SUBD address Subtract from Accu Direct 34
13 TEACH axis speed address Teach-In,Direct Argument 25
19 TOOL Tool numb. Set Tool parameters 25
47 TOOLP Tool Nr File Nr Geometric file interpretation 45
81 TPING Axis Pitch Tap. Pos. Tapping instruction 27
70 WAIT time Dead Timer, Immed. Time 34
20 WAIT0 input Wait if Input is False 29
21 WAIT1 input Wait if Input is True 29
71 WAITD address Dead Timer, Direct Time 34
82 WAITP Axis Speed position Mode-w Waiting reaching a position 45
89 ZTOOL Axis Input nb direction Ref. for auto. tool adjustment 28
72 2HON Beginning of 2 hand start section
73 2HOFF End of 2 hand start section

Table 9-1 : UNIPROG+ Instructions

Axes: X = 0 Y = 1

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 51

99..22 IInnppuuttss aanndd oouuttppuuttss::
Input Item Output Item

0 IN(0) 0 OUT(0)
1 IN(1) 1 OUT(1)
2 IN(2) 2 OUT(2)
3 IN(3) 3 OUT(3)
4 IN(4) 4 OUT(4)
5 IN(5) 5 OUT(5)
6 IN(6) 6 OUT(6)
7 IN(7) 7 OUT(7)
8 SIM(0) 8 SIM(0)
9 SIM(1) 9 SIM(1)
10 SIM(2) 10 SIM(2)
11 FLAG(0) 11 FLAG(0)
12 FLAG(1) 12 FLAG(1)
13 FLAG(2) 13 FLAG(2)
14 FLAG(3) 14 FLAG(3)
15 FLAG(4) 15 FLAG(4)
16..49 IN(16)..IN(49) 16..63 OUT(16)..OUT(63)
50..59 KEY("0".."9")
60 INA0
61 INB0
62 INA1
63 INB1

Table 9-2 : UNIPROG+ Inputs and Outputs

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 52

1100 EE330000 WWiirriinngg

1100..11 CCoommppaacctt CCoonnttrroolllleerr TTyyppee EE330000--CCMMPP

1100..11..11 CCoommppaattiibbiilliittyy wwiitthh EE--660000

The I/O EXT connectors and E600-3 connectors are same between E300-CMP and E600-Base. The
I/O connector is similar but not fully compatible with E600. Therefore, plugging of E600 cable into
E300 connector is not destructive. The position of some signals is the same as E600.

Following table show the differences between I/O connectors:

E300 and E600 I/O 19 pin comparison
Pin E300 E600
A 0V 0V
B OUT4 OUT4
C OUT5 OUT5
D OUT6 OUT6
E OUT7 OUT7
F IN0 Analog GND
G IN4 DAC out
H OUT0 OUT0
J IN1 +5VDC (output)
K IN5 ADC input
L IN2 IN2
M IN6 IN6
N IN3 IN3
P IN7 IN7
R 0V AGND
S OUT1 OUT1
T OUT2 OUT2
U OUT3 OUT3
V +24VDC +24VDC

Tableau 10-1 : E300 et E600 I/O comparison

The ANALOG I/O doesn't exists in E600. The RS-232 pinning is not the same as E600.

1100..11..22 II//OO CCoonnnneeccttoorr
The I/O connector regroups 24 VDC inputs and outputs, and 24V supply for them.

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 53

Pin Signal

A 0 V, output return
B OUT(4), 24 V, 1 A
C OUT(5), 24 V, 1 A
D OUT(6), 24 V, 1 A
E OUT(7), 24 V, 1 A
F IN(0) 24V input
G IN(4) 24V input
H OUT(0), 24 V, 1 A
J IN(1) 24V input
K IN(5) 24V input
L IN(2) 24V input
M IN(6) 24V input
N IN(3) 24V input
P IN(7) 24V input
R 0 V, output return
S OUT(1), 24 V, 1 A
T OUT(2), 24 V, 1 A
U OUT(3), 24 V, 1 A
V Unregulated +24 VDC supply

Tableau 10-2 : E300 I/O Connector, 19 pin Burndy

Each output can deliver 1A but the sum of the 8 output currents must not exceed 4 ampere.

1100..11..33 II//OO EEXXTT CCoonnnneeccttoorr
This connector regroups the signals for external I/O modules like E-500-I1, I2, I3 and
E-500-ODC1.

1100..11..44 RRSS 223322 CCoonnnneeccttoorr
RS-232 connector is designed to connect the E300 to a PC through a 1 to 1 cable, for use the
NewWincom or APEX software.

1100..11..55 EE--660000--33 MMoodduullee,, 22 PPhhaassee SStteepp--bbyy--SStteepp MMoottoorr TTrraannssllaattoorr ffrroomm EEIIPP
"Slow/fast decay" system translator, with 1600 microsteps.

Pin Signal

A B phase winding
B B phase winding
C A phase winding
D A phase winding
E INA 24V input
F INB 24V input
G +24VDC supply
H 0V

Tableau 10-3 : E600-3 Connector, 8 pin Burndy

1100..11..55..11 CCuurrrreenntt SSeettttiinngg
The rotative selector is designed to choose the peak to peak current corresponding to the motor.
The value of the current is obtained when the BOOST signal is active. Otherwise the current is

E.I.P. SA E-300, UNIPROG
CH-1667 Enney Page 54

reduced to 60% of the selected value.

 Position Current Position Current

0 2.0 A 5 5.3 A
1 2.7 A 6 6.0 A
2 3.3 A 7 6.7 A
3 4.0 A 8 7.3 A
4 4.6 A 9 8.0 A

Tableau 10-4 : E600-3, Current Setting

1100..11..66 AANNAALLOOGG II//OO CCoonnnneeccttoorr

This connector regroups analog inputs and outputs. This is a D-sub 9 pole male type:

Pin Description Remarque
1 +5Vref OUT
2 ADC1 IN
3 ADC2 IN
4 DAC0 OUT
5 DAC1 OUT
6 AGND -
7 AGND -
8 AGND -
9 AGND -

Tableau 10-5 : E300 Analog I/O connector

